

### IXL Learning, Inc.

Supplemental English Mathematics, 1 IXL Math Grade1

| Supplemental  | 9781947569355 | Digital | Adaptive        |
|---------------|---------------|---------|-----------------|
| MATERIAL TYPE | ISBN          | FORMAT  | ADAPTIVE/STATIC |

#### **Rating Overview**

| TEKS SCORE | TEKS BREAKOUTS | ERROR CORRECTIONS | SUITABILITY     | SUITABILITY    | PUBLIC FEEDBACK |
|------------|----------------|-------------------|-----------------|----------------|-----------------|
|            | ATTEMPTED      | (IMRA Reviewers)  | NONCOMPLIANCE   | EXCELLENCE     | (COUNT)         |
| 100%       | 142            | 11                | Flags Addressed | Not Applicable | 0               |

#### **Quality Rubric Section**

| RUBRIC SECTION                                        | RAW SCORE    | PERCENTAGE |
|-------------------------------------------------------|--------------|------------|
| 1. Intentional Instructional Design                   | 13 out of 21 | 62%        |
| 2. Progress Monitoring                                | 18 out of 23 | 78%        |
| 3. Supports for All Learners                          | 29 out of 37 | 78%        |
| 4. Depth and Coherence of Key Concepts                | 16 out of 16 | 100%       |
| 5. Balance of Conceptual and Procedural Understanding | 33 out of 38 | 87%        |
| 6. <u>Productive Struggle</u>                         | 19 out of 19 | 100%       |

### Breakdown by Suitability Noncompliance and Excellence Categories

| SUITABILITY NONCOMPLIANCE FLAGS BY CATEGORY                      | IMRA<br>REVIEWERS | PUBLIC | Flags NOT<br>Addressed by<br>November Vote |
|------------------------------------------------------------------|-------------------|--------|--------------------------------------------|
| 1. Prohibition on Common Core                                    | <u>3</u>          | 0      | 0                                          |
| 2. Alignment with Public Education's Constitutional Goal         | 0                 | 0      | 0                                          |
| 3. Parental Rights and Responsibilities                          | 0                 | 0      | 0                                          |
| 4. Prohibition on Forced Political Activity                      | 0                 | 0      | 0                                          |
| 5. Protecting Children's Innocence                               | 0                 | 0      | 0                                          |
| 6. Promoting Sexual Risk Avoidance                               | 0                 | 0      | 0                                          |
| 7. Compliance with the Children's Internet Protection Act (CIPA) | 0                 | 0      | 0                                          |

| SUITABILITY EXCELLENCE FLAGS BY CATEGORY                          | IMRA REVIEWERS |
|-------------------------------------------------------------------|----------------|
| Category 2: Alignment with Public Education's Constitutional Goal | 0              |
| Category 6: Promoting Sexual Risk Avoidance                       | 0              |

### **IMRA Quality Report**

### 1. Intentional Instructional Design

Materials support educators in effective implementation through intentional course and lesson-level design.

### 1.1 Course-Level Design

| GUIDANCE | SCORE SUMMARY                                                                                                                                                                                                                           | RAW SCORE |
|----------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|
| 1.1a     | Materials do not include the English Language Proficiency Standards (ELPS) in the alignment guide with a rationale for learning paths across grade levels (vertical alignment), and within the same grade level (horizontal alignment). | 2/5       |
| 1.1b     | All criteria for guidance met.                                                                                                                                                                                                          | 3/3       |
| 1.1c     | All criteria for guidance met.                                                                                                                                                                                                          | 2/2       |
| 1.1d     | Materials do not include guidance for unit internalization.                                                                                                                                                                             | 1/2       |
| 1.1e     | All criteria for guidance met.                                                                                                                                                                                                          | 2/2       |
| _        | TOTAL                                                                                                                                                                                                                                   | 10/14     |

## 1.1a – Materials include an alignment guide outlining the TEKS, ELPS, and concepts covered, with a rationale for learning paths across grade levels (vertical alignment) and within the same grade level (horizontal alignment) as designed in the materials.

The materials do not include a rationale for learning paths across grade levels (vertical alignment) or within the same grade level (horizontal alignment). The platform organizes content by topic and grade level. Within each strand—such as addition and subtraction or geometry—the program shows how skills progress across grade levels, supporting current and future learning.

The materials do not include the ELPS in any of the alignment documents.

The "Skill Plan" lists each grade 1 TEKS alongside its corresponding IXL Skill, ensuring direct alignment to required state standards. Educators can access this through the Skills Page, organized by grade and standard.

## 1.1b – Materials include an implementation guide with usage recommendations and strategies for effective educator use in various contexts, such as just-in-time supports, advanced learning, or as a course.

The "Weekly Plans" and "Implementation Guides" provide structured lesson-planning tools and instructional guidance for whole-group, small-group, and independent learning. These plans include pacing and grouping suggestions and adjust based on skill strands or focus areas. Teachers also receive differentiation strategies and homework extensions to meet diverse student needs.

The "Implementation Guides" and "Diagnostic Action Plans" help educators tailor instruction using student performance data and TEKS-aligned skill groupings. Recommendations include using the Northwest Evaluation Association Measures of Academic Progress (NWEA MAP) results to assign targeted IXL Skills, tiered practice suggestions, and skill pairings for enrichment and reteaching. Personalized Learning Paths based on diagnostic data further support differentiation.

The Learning Hub offers planning templates, video walkthroughs, and strategies in the Classroom Strategies section to help educators adapt lessons. It also provides visual examples and targeted guidance for intervention and advanced learning.

### 1.1c - Materials include a TEKS correlation guide with recommended skill entry points based on diagnostic assessment results.

The Diagnostic Hub provides a detailed view of student proficiency and generates Personalized Diagnostic Action Plans aligned to each student's level. These plans, accessible through the Teacher Dashboard, link directly to TEKS-aligned skills and offer differentiated entry points using the Skill Plan.

The platform groups students by proficiency level and recommends targeted skills for small-group instruction, intervention, or enrichment. Teachers can use features like Strand Analysis to identify performance gaps—such as in Number and Operations—and assign aligned skills to address specific needs.

The Skill Plan maps diagnostic results to TEKS by unit and standard, helping educators identify appropriate entry points and plan instruction that aligns with student readiness. This TEKS correlation supports targeted, data-driven instruction across all proficiency levels.

### 1.1d - Materials include protocols with corresponding guidance for unit and lesson internalization.

The materials do not include guidance for unit internalization; however, instructional planning tools, such as pacing calendars, data reports, and visual skill pathways, support lesson internalization and appear throughout the Learning Hub and "Implementation Guides."

Lesson plans include a clear objective, materials, embedded supports, and a teaching sequence that moves from guided to independent practice. For example, the Take Apart Stories lesson,, provides a printable outline, teacher notes, and a summary for reinforcement.

The Learning Hub includes instructional tools such as Reliable Routines, sample lesson flows, and planning aids that guide teachers through lesson preparation. These resources appear under Daily Planning and Instructional Strategies.

## 1.1e – Materials include resources and guidance for instructional leaders to support educators with implementing the materials as designed.

The Learning Hub and Help Center provide user guides, onboarding resources, and step-by-step visuals to support district and campus implementation. The Getting Started section includes tools like the "Administrator Quick Start Guide," implementation calendars, and class setup walkthroughs with embedded links and training modules.

The Diagnostic Hub offers strategy guides, video tutorials, and dashboards to support data-driven decision-making at the classroom, campus, and district levels. Instructional leaders can use real-time proficiency reports and visualization tools to monitor progress and identify trends.

The Implementation Guides and Learning Hub contain downloadable resources, coaching tips, and pacing tools to strengthen instructional leadership. These supports help leaders use diagnostic data to guide instruction and provide ongoing professional development.

#### 1.2 Lesson-Level Design

| GUIDANCE | SCORE SUMMARY                                                                                    | RAW SCORE |
|----------|--------------------------------------------------------------------------------------------------|-----------|
| 1.2a     | This guidance is not applicable to the program.                                                  | N/A       |
| 1.2b     | Materials do not include ELPS within the learning objectives or within the assessment resources. | 1/5       |
| 1.2c     | All criteria for guidance met.                                                                   | 2/2       |
| _        | TOTAL                                                                                            | 3/7       |

## 1.2a – If designed to be static, materials include detailed lesson plans with learning objectives, teacher and student materials, lesson components with suggested timeframes, and assessment resources aligned with the TEKS and ELPS.

This guidance is not applicable because the program is not designed to be static.

## 1.2b – If designed to be adaptive, materials include detailed lesson overviews with learning objectives, lesson components with suggested timeframes, and assessment resources aligned with the TEKS and ELPS.

The materials do not include assessment resources that are aligned with the ELPS.

The materials offer flexible, TEKS-aligned lesson components that support instructional decisions based on textbook alignment, student performance, or district pacing. Tools like the Skill Plan allow teachers to customize learning paths using filters for standards, curricula, or assessments. Instructional supports—including learning objectives, guided and independent practice, and student-facing skill tracking—are available in the Learning Hub and "Implementation Guides."

Diagnostic assessments generate skill recommendations based on student proficiency to guide instruction and reinforce TEKS-aligned goals. Teachers can access Personalized Diagnostic Action Plans and the Recommendations Wall through the Diagnostic Hub, which provides next-step skills and suggests targeted practice based on recent activity.

## 1.2c - Materials contain support for families in Spanish and English for each unit, with suggestions on supporting the progress of their student(s).

IXL offers parent handouts and video tutorials in both English and Spanish, along with printable login directions and resources accessible through the Help Center and Learning Hub.

IXL provides family resources in English and Spanish, including printable guides explaining how to log in, support learning, and encourage practice at home. These materials are available in the Help Center and the For Families section of the Learning Hub, which also offers getting-started guides, skill plan, and

printable activities. Families can access tools like the IXL Family Letter with login tips and progress-tracking guidance.

Most family-facing resources are primarily in English, with limited materials available in Spanish. For example, parents can watch a short video on navigating the student dashboard and using recommendations and diagnostics to monitor progress.

#### 2. Progress Monitoring

Materials support educators in effective implementation through frequent, strategic opportunities to monitor and respond to student progress.

#### 2.1 Instructional Assessments

| GUIDANCE | SCORE SUMMARY                                                            | RAW SCORE |
|----------|--------------------------------------------------------------------------|-----------|
| 2.1a     | All criteria for guidance met.                                           | 2/2       |
| 2.1b     | All criteria for guidance met.                                           | 2/2       |
|          | Materials do not include accommodations, including text-to-speech,       |           |
| 2.1c     | content and language supports, and calculators that educators can enable | 1/4       |
|          | or disable to support individual students.                               |           |
| 2.1d     | All criteria for guidance met.                                           | 4/4       |
| 2.1e     | All criteria for guidance met.                                           | 4/4       |
|          | TOTAL                                                                    | 13/16     |

### 2.1a – Materials include the definition and intended purpose for the types of instructional assessments.

The "Implementation Guides" define diagnostic assessment as a tool that provides baseline data on student skill levels to support instructional planning. The Flex Diagnostic Overview further explains its use for identifying skill levels, monitoring progress, personalizing learning paths, and informing instruction.

The materials clearly outline the purpose of instructional assessments, emphasizing their role in targeting instruction, tracking growth over time, and supporting data-driven decision-making through adaptive learning tools.

The "Implementation Guide for Diagnostic Assessment" details multiple assessment types—including Live Assessment, Unit Assessment, IEP Progress Monitoring, and the "i-Ready" Diagnostic Assessment—along with guidance on using each to plan lessons, monitor progress, and adjust instruction to meet student needs.

### 2.1b – Materials include guidance to ensure consistent and accurate administration of instructional assessments.

The materials include guidance to ensure consistent administration of instructional assessments. For example, the *Real-Time Diagnostic Guide* recommends setting two administration dates, scheduling 20–25 minute sessions, and guiding students to complete 10–15 questions weekly to maintain consistency across testing windows.

The materials include guidance to ensure accurate administration of instructional assessments. For example, the *Real-Time Diagnostic Guide* explains that the initial diagnostic requires approximately 45 minutes and provides expectations for ongoing participation to produce accurate and actionable data.

The materials include step-by-step procedures and teacher guidance for administering Real-Time Diagnostic and Flex Diagnostic assessments. The materials also provide student-facing instructions through the *IXL Flex Diagnostic Real-Time Mode Guide* to support accurate student participation and progress monitoring.

## 2.1c – Digital assessments include printable versions and accommodations, including text-to-speech, content and language supports, and calculators, that educators can enable or disable to support individual students.

Materials do not include accommodations, including text-to-speech, content and language supports, and calculators that educators can enable or disable to support individual students. Audio supports are automatically turned on for grades K–2 and cannot be disabled for individual students. While the materials do include the ability to turn on translation for students, this does not meet the definition for content and language supports, examples of which include pop-ups and rollovers.

The materials do not include calculators that can be enabled or disabled for individual students or content and language supports. While translation is available for students, this is not considered content and language support.

The materials include the ability to print some assessments. Teachers can print assigned quizzes by selecting Print Quiz from the Quizzes tab menu and can print teacher-created quizzes. However, the program notes that some interactive question types may not translate well to print. The diagnostic assessment is adaptive and cannot be printed.

## 2.1d – Materials include diagnostic assessments with TEKS-aligned tasks or questions, including interactive item types with varying complexity levels.

Materials include diagnostic assessments with TEKS-aligned tasks or questions, including interactive item types with varying complexity levels. Questions ask students to calculate, compare, and justify through single- and multi-step problems.

The *Diagnostic Hub Student Guide* explains how the diagnostic assesses student knowledge through varying complexity levels and a progression of skills ranging from basic recall to multi-step reasoning and supports personalized learning paths. While evidence of complexity is implicit in the questions, questions are not explicitly labeled by complexity level. Additionally, all students may not have access to varying levels of complexity, as the materials are adaptive and become more complex the more successful the student is.

The materials include diagnostic assessments with more than two interactive item types, including, but not limited to, multi-select, drag and drop, and text entry, along with multiple-choice questions.

## 2.1e – Materials include a variety of formative assessments with TEKS-aligned tasks or questions, including interactive item types with varying complexity levels.

The materials include a variety of formative assessments with TEKS-aligned tasks or questions that feature varying levels of complexity; for example, the grade 1 Lesson "Add by making 10 using ten frames" progresses from using concrete models and drawings to peer discussion and justification, and Skills tasks scaffold by complexity and adjust based on student responses.

The materials include formative, Live Assessments with more than two unique interactive item types. Depending on the skill, students engage with multiple-choice selection, text entry, drag-and-drop, graphing, and number-line tasks.

The materials support ongoing formative assessment through adaptive skill checks and Live Assessment, which continuously adjust question complexity based on student responses and provide real-time data on proficiency and learning needs aligned to the TEKS.

#### 2.2 Data Analysis and Progress Monitoring

| GUIDANCE | SCORE SUMMARY                                                       | RAW SCORE |
|----------|---------------------------------------------------------------------|-----------|
| 2.2a     | Materials do not include a rationale for each correct and incorrect | 1/3       |
| 2.28     | response.                                                           | 175       |
| 2.2b     | All criteria for guidance met.                                      |           |
| 2.2c     | All criteria for guidance met.                                      | 2/2       |
| 2.2d     | This guidance is not applicable to the program.                     | N/A       |
| 2.2e     | All criteria for guidance met.                                      |           |
|          | TOTAL                                                               | 5/7       |

## 2.2a – Instructional assessments include scoring information and guidance for interpreting student performance, including rationale for each correct and incorrect response.

The materials do not include a rationale for each correct and incorrect answer. While IXL provides detailed scoring information, student performance reports, and recommendations through tools like the Flex Diagnostic Overview and Student Quiz Results, the program lacks rationales for correct and incorrect responses within assessments. Adaptive practice offers immediate explanations for errors; this feature is not integrated into assessment tools designed to track or evaluate learning progress.

Teachers have access to individual and class-level scoring data through the Diagnostic Hub, which helps guide instruction. The system offers visual dashboards and progress breakdowns for targeted support, including individualized skill plan and quiz summaries that highlight student averages and performance trends.

During skill practice, IXL provides step-by-step justifications for incorrect responses, helping students address misconceptions in real time. However, these justifications are not embedded within formal instructional assessments or available for correct answers, limiting their utility for data-driven planning and progress monitoring within the assessment system.

## 2.2b – Materials provide guidance for the use of included tasks and activities to respond to student trends in performance on assessments.

The materials provide guidance for using included tasks and activities to respond to student performance trends on assessments. The Skills Practiced feature allows educators to view student progress by skill, including mastery levels and specific Trouble Spots. Teachers can filter data by TEKS or skill plan and click on student names to see individual responses, enabling targeted reteaching. For example, hovering over Skills Progress reveals how many students are in each performance category, and Trouble Spots identifies students needing support for each skill.

IXL provides structured suggestions to respond to assessment trends, including targeted tasks and follow-up skill practice tied to student performance data. For example, Trouble Spots and Diagnostic Action Plans recommend next-step skills for students demonstrating difficulty, supporting responsive instructional planning.

The Flex Diagnostic Overview tab provides teachers with a detailed breakdown of student performance, categorizes assessment questions into seven key areas: fractions, numbers and operations, algebraic thinking, geometry, measurement, statistics, and data analysis. Teachers receive recommendations for intervention support or advanced skills practice for each category. For instance, if a student scores low in the measurement section, teachers can assign remedial practice or utilize recommended instructional strategies for small-group intervention.

## 2.2c – Materials include tools for teachers to track student progress and growth, and tools for students to track their own progress and growth.

The materials include tools that allow teachers to track student progress and growth through Teacher Dashboard, Analytics, and Assessments. These tools provide real-time data on individual and class trends, including skill proficiency, diagnostic performance, and areas of struggle. For example, teachers can view which students have mastered, are practicing, or have not yet attempted specific skills, and monitor progress over time to guide instructional decisions.

Students can track their own progress and growth through the Student Dashboard and Action Plan, which display personalized recommendations and track skill proficiency. These tools promote student ownership by showing what students know, what they are ready to learn next, and progress made across skills and strands. For example, students can view teacher-assigned and program-generated skill suggestions as well as awards earned for their weekly achievements.

The program includes printable and digital tools, such as diagnostic tracking worksheets, to further support student reflection and goal setting. These features reinforce both short-term and long-term progress monitoring, enabling students and educators to stay aligned on growth goals throughout the year.

## 2.2d – If designed to be static, materials provide prompts and guidance to support educators in conducting frequent checks for understanding at key points throughout each lesson or activity.

This guidance is not applicable because the program is not designed to be static.

## 2.2e – If designed to be adaptive, materials provide frequent checks for understanding at key points throughout each lesson or activity.

The materials provide real-time feedback after each question, enabling frequent checks for understanding as students work through skills. The program adjusts instruction based on student responses, offering new recommendations and personalized tasks aligned to performance. For example, the Recommendation Wall updates dynamically with notes like Try Something New or Because You Excelled, prompting next steps based on student progress.

After each item, students receive instant feedback, reinforced correct answers, and incorrect responses trigger step-by-step explanations or linked video reviews. These checks occur at every interaction, supporting error correction and reinforcing conceptual understanding. For example, in Skill Practice, students who answer incorrectly are shown how they answered and how to solve the problem correctly.

Teachers access features like Live Classroom and Quick Quizzes to check progress throughout lessons. These tools provide live updates and highlight students who are struggling, idle, or approaching mastery. For example, the Live Classroom view flags student status with color-coded tiles, so teachers can respond immediately with support or encouragement.

#### 3. Supports for All Learners

Materials support educators in reaching all learners through design focused on engagement, representation, and action/expression for learner variability.

#### 3.1 Differentiation and Scaffolds

| GUIDANCE | SCORE SUMMARY                                                                                                                                                                          | RAW SCORE |
|----------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|
| 3.1a     | All criteria for guidance met.                                                                                                                                                         | 1/1       |
| 3.1b     | Materials do not include explicit educator guidance for unfamiliar references in the text.                                                                                             | 3/4       |
| 3.1c     | All criteria for guidance met.                                                                                                                                                         | 2/2       |
| 3.1d     | Materials do not include accommodations, including text-to-speech, content and language supports, and calculators that educators can enable or disable to support individual students. | 0/3       |
| 3.1e     | All criteria for guidance met.                                                                                                                                                         | 2/2       |
| _        | TOTAL                                                                                                                                                                                  | 8/12      |

## 3.1a – Materials include explicit educator guidance for lessons or activities scaffolded for students who have not yet reached proficiency in prerequisite or grade-level concepts and skills.

The materials include explicit guidance to help teachers identify and address gaps in prerequisite knowledge. For example, Live Classroom and Real-Time Diagnostic tools include educator-facing prompts and next-step recommendations that guide targeted instruction for students not yet meeting grade-level expectations.

The materials include embedded teacher tips and instructional supports throughout lessons to scaffold learning for students not yet proficient. For example, in the teacher-facing lesson plan, the lesson suggests using manipulatives to support conceptual understanding and offers guidance for providing extensions or interventions based on student responses.

The materials guide teachers to deliver scaffolded content through skill progressions and tailored instructional suggestions. For example, when a student struggles with "Subtract by counting back - up to 10," the materials recommend prerequisite review skills such as "Counting forward and backward - up to 10."

#### 3.1b – Materials include explicit educator guidance for language supports, including preteaching and embedded supports for developing academic vocabulary and unfamiliar references in text.

The materials do not include explicit educator guidance on pre-teaching supports for unfamiliar references in text. For example, the IXL mini video Empower Independent Learning explains what the program does automatically, but it does not provide explicit educator guidance.

Lessons include optional embedded supports such as Learn More tabs with definitions and examples (e.g., equal and unequal parts) and visual aids to clarify concepts. Students can also click the lightbulb icon for a worked example or watch a learning video before beginning skills practice, reinforcing understanding of key terms and procedures. The IXL mini video Get More out of Learn with Example provides educator guidance on this feature.

Materials provide educator guidance on integrated language supports. Language Tips in math lessons provide sentence stems to guide oral and written responses.

## 3.1c – Materials include explicit educator guidance for enrichment and extension activities for students who have demonstrated proficiency in grade-level and above grade-level content and skills.

The materials include explicit educator guidance for extending instruction within lessons. For example, in the Build and Draw 2D Shapes lesson, teachers are directed to have students build a shape that is not a square but contains at least two attributes from a provided checklist.

The materials provide sidebar notes that offer enrichment suggestions within teacher lessons. For example, teachers receive built-in prompts that recommend targeted extension tasks to challenge students who have demonstrated proficiency.

The materials include Ideas for Extension embedded in lessons to guide teachers in deepening student understanding. These suggestions help educators extend learning through open-ended questions or attribute-based challenges tied to the core lesson content.

## 3.1d – Digital materials include accommodations, including text-to-speech, content and language supports, and calculators that educators can enable or disable to support individual students.

The materials do not include accommodations, including text-to-speech, content and language supports, and calculators that educators can enable or disable to support individual students.

Text-to-speech, including diagnostic items, is automatically available across K–2 math skills. Students can click a speaker icon to hear directions, questions, and answers read aloud, but this cannot be enabled or disabled by the educator for individual students.

## 3.1e – Materials include educator guidance on offering options and supports for students to demonstrate understanding of mathematical concepts in various ways, such as perform, express, and represent.

The materials include educator guidance for offering multiple ways for students to demonstrate mathematical understanding. For example, in the Count Objects lesson, teachers are directed to have students use skip-counting strategies through cubes, drawings, gestures, or peer discussions.

The materials support students' expression of understanding using various modalities. For example, students can demonstrate their understanding of addition word problems by using pictures, building cube trains, modeling with manipulatives, or writing number sentences.

The materials include teacher-facing tools to encourage students to articulate and represent mathematical thinking. For example, lesson plans include sentence stems and pictorial representations, and the Additional Support tab suggests strategies like manipulatives, number lines, and diagrams to support diverse learners.

#### 3.2 Instructional Methods

| GUIDANCE | SCORE SUMMARY                                   | RAW SCORE |
|----------|-------------------------------------------------|-----------|
| 3.2a     | All criteria for guidance met.                  | 5/5       |
| 3.2b     | This guidance is not applicable to the program. | N/A       |
| 3.2c     | All criteria for guidance met.                  |           |
| 3.2d     | All criteria for guidance met.                  | 2/2       |
| 3.2e     | All criteria for guidance met.                  | 2/2       |
| _        | TOTAL                                           | 12/12     |

# 3.2a – Materials include explicit (direct) prompts and guidance for educators to build knowledge by activating prior knowledge, anchoring big ideas, and highlighting and connecting key patterns, features, and relationships through multiple means of representation.

The materials include explicit prompts that activate prior knowledge by connecting concrete representations to symbolic notation and word problems. For example, in the Add in Any Order lesson, students write an equation to match a story problem and a cube train, prompting recall of earlier strategies to build toward flexible addition.

The materials anchor big ideas by organizing content around mathematical themes and providing conceptual overviews that situate individual skills within broader learning goals. For example, the Skill Plan groups lessons by topics such as number sense and operations, which helps educators reinforce overarching mathematical structures.

The materials highlight and connect key patterns, features, and relationships through multiple means of representation, including visual models, videos, and interactive tasks. For example, in Build and Break Apart Teen Numbers, students view a video that demonstrates place value using base-ten blocks before applying the concept in skills practice.

### 3.2b – If designed to be static, materials include educator guidance for effective lesson delivery and facilitation using various instructional approaches.

This guidance is not applicable because the program is not designed to be static.

## 3.2c – Materials include multi-tiered intervention methods for various types of practice and structures and educator guidance to support effective implementation.

The materials include multi-tiered intervention methods that support various types of practice, including independent, guided, and collaborative modes. For example, students engage in independent skill

practice through personalized Recommendations, receive corrective feedback and reteaching when answering incorrectly, and participate in collaborative Group Jam activities led by the teacher.

The materials support multiple instructional structures, such as whole-group, small-group, and individual practice. For example, teachers use data from the Real-Time Diagnostic and Trouble Spots reports to pull small groups or offer targeted one-on-one support aligned to students' needs.

The materials include educator guidance to support the effective implementation of multi-tiered interventions. For example, the "Implementation Guide for Live Assessment" provides steps to plan, deliver, and adjust instruction in real time based on student progress, allowing teachers to monitor skill mastery and provide immediate support.

## 3.2d – Materials include enrichment and extension methods that support various forms of engagement, and guidance to support educators in effective implementation.

The materials include enrichment and extension methods that support various forms of engagement, such as adaptive skill progression, interactive games, and video-supported lessons. For example, as students demonstrate proficiency, the program adjusts difficulty and presents Challenge Zones to promote deeper engagement with advanced content.

The materials support differentiated learning by guiding students to appropriate enrichment opportunities through the Real-Time Diagnostic and Differentiation Recommendations Wall. For example, students who show readiness are directed to accelerate through personalized skill paths that build on their strengths.

The materials include guidance to support educators in effectively implementing enrichment and extension. For example, the "Implementation Guide for Personalized Practice" helps teachers determine when to enrich and which activities to assign, and many lessons include embedded suggestions for extension tasks.

## 3.2e – Materials include prompts and guidance to support educators in providing timely feedback during lesson delivery.

The materials include prompts to support educators in providing timely feedback during lesson delivery. For example, during Group Jam activities, educators receive prompts to explain answers, adjust question difficulty, and determine next steps based on student responses.

The materials include guidance and tools that help educators monitor student performance and respond in real time. For example, the Live Classroom dashboard and Real-Time Analytics display student progress, pace, and accuracy, enabling teachers to give immediate feedback and adjust instruction as needed.

The materials support timely, individualized feedback through embedded features and reports. For example, as students work on skills, they receive instant feedback with step-by-step explanations, and teachers can use SmartScore data and the Recommendations Wall to identify and address misconceptions during instruction.

#### 3.3 Support for Emergent Bilingual Students

An emergent bilingual student is a student who is in the process of acquiring English and has another language as the primary language. The term emergent bilingual student replaced the term English learner in the Texas Education Code 29, Subchapter B after the September 1, 2021 update. Some instructional materials still use English language learner or English learner and these terms have been retained in direct quotations and titles.

| GUIDANCE | SCORE SUMMARY                                                             | RAW SCORE |
|----------|---------------------------------------------------------------------------|-----------|
| 3.3a     | This guidance is not applicable to the program.                           | N/A       |
| 3.3b     | Materials do not include embedded linguistic accommodations for more      | 2/4       |
| 5.50     | than two levels of language proficiency.                                  | 2/4       |
|          | Materials do not include implementation guidance to support educators in  |           |
| 3.3c     | effectively using the materials in state-approved bilingual/English as a  | 0/1       |
|          | Second Language (ESL) programs.                                           |           |
|          | Materials do not include embedded guidance to support emergent            |           |
| 3.3d     | bilingual students in making cross-linguistic connections through written | 7/8       |
|          | discourse.                                                                |           |
| 3.3e     | This guidance is not applicable to the program.                           | N/A       |
| _        | TOTAL                                                                     | 9/13      |

3.3a – If designed to be static, materials include educator guidance on providing and incorporating linguistic accommodations for all levels of language proficiency [as defined by the English Language Proficiency Standards (ELPS)], which are designed to engage students in using increasingly more academic language.

This guidance is not applicable because the program is not designed to be static.

3.3b – If designed to be adaptive, materials include embedded linguistic accommodations for all levels of language proficiency [as defined by the English Language Proficiency Standards (ELPS)], which are designed to engage students in using increasingly more academic language.

The materials do not include adaptive scaffolds to advance students through multiple ELPS proficiency levels, though some lessons include educator guidance for language development. While supports exist for at least two levels of language proficiency, there is insufficient evidence of embedded accommodations that intentionally guide students through increasingly complex academic language across multiple proficiency levels.

The materials provide embedded linguistic accommodations primarily aligned to Beginning and Intermediate English proficiency levels, such as text-to-speech, translation tools, and sentence stems

paired with visuals. These supports help students access content and build foundational academic language. However, the materials do not include features that promote advanced language use across multiple ELPS levels, such as complex sentence structures, evolving scaffolds, or peer discourse routines.

Teacher-facing supports provide general strategies for scaffolding academic language development, such as encouraging discussions in a shared language, using gestures or visuals, and color-coding. For example, the grade 1 Lesson "Take Apart Stories" suggests these strategies to help language learners identify operations in word problems.

### 3.3c – Materials include implementation guidance to support educators in effectively using the materials in state-approved bilingual/ESL programs.

The materials do not include implementation guidance to support educators in effectively using the materials in state-approved bilingual or ESL programs. There is no section of the "Teacher's User Guide" or Learning Hub that offers strategies or routines tailored to the structure or requirements of bilingual/ESL instructional models (e.g., pairing language objectives with math goals or co-teaching models common in dual-language settings).

The materials do not include supports that help educators adapt content for emergent bilingual students across different program models. There are no embedded recommendations for grouping, pacing, or instructional strategies specific to transitional bilingual education, dual-language immersion, or ESL pull-out services (e.g., the "Implementation Guides" do not reference bilingual education models or include adaptations aligned to Texas bilingual/ESL program design).

The materials do not provide bilingual- or ESL-specific educator supports, such as scaffolded lesson guidance, language-allocation strategies, or cross-linguistic transfer activities. While some general language supports exist, these are not contextualized within the framework of bilingual or ESL instruction (e.g., the "Teacher's User Guide" does not include guidance for delivering instruction in both English and the partner language or suggestions for leveraging students' home language to support academic math vocabulary development).

## 3.3d – Materials include embedded guidance to support emergent bilingual students in developing academic vocabulary, increasing comprehension, building background knowledge, and making cross-linguistic connections through oral and written discourse.

Materials do not include embedded guidance to support emergent bilingual students in making cross-linguistic connections through written discourse. For example, in the Add To and Take From Stories lesson, the Language Tip suggests reading problems three times with different focuses to build comprehension, and students label parts or wholes to support academic writing; however, it does not provide teacher-facing guidance for helping students explicitly transfer these connections into written explanations in both languages.

The materials include embedded supports to help educators develop academic vocabulary and increase comprehension through oral and written discourse. Lessons provide sentence stems and language routines designed to model and practice precise mathematical language during instruction.

The materials include embedded supports to develop academic vocabulary, build background knowledge, and increase comprehension through oral and written discourse. For example, videos like Ten more or less guide students in oral counting with visual supports, while the read-aloud feature and sentence stems promote vocabulary development and conceptual understanding through structured dialogue.

3.3e – If designed for dual language immersion (DLI) programs, materials include resources that outline opportunities to address metalinguistic transfer from English to the partner language.

This guidance is not applicable because the program is not designed for dual language immersion (DLI) programs.

### 4. Depth and Coherence of Key Concepts

Materials are designed to meet the rigor of the standards while connecting concepts within and across grade levels/courses.

#### 4.1 Depth of Key Concepts

| GUIDANCE | SCORE SUMMARY                  | RAW SCORE |
|----------|--------------------------------|-----------|
| 4.1a     | All criteria for guidance met. | 2/2       |
| 4.1b     | All criteria for guidance met. | 4/4       |
|          | TOTAL                          | 6/6       |

## 4.1a – Practice opportunities throughout learning pathways (including instructional assessments) require students to demonstrate depth of understanding aligned to the TEKS.

The materials provide practice opportunities throughout learning pathways that prompt students to demonstrate depth of understanding aligned to the TEKS. For example, in Skill W.4, "Comparison word problems up to 20," students first select a model to represent a problem and then progress to solving problems independently without visual models, supporting conceptual understanding and problem-solving skills.

Instructional assessments embedded in lessons require students to demonstrate a depth of understanding aligned to the TEKS. For example, in Skill "Subtract by counting back within 20," students begin by marking pictures of objects and writing subtraction sentences, then progress to using a number line and ultimately solve problems mentally. The lesson also includes discussion tasks, such as comparing two solution methods and explaining which was easier and why, to deepen reasoning.

The materials support Individualized Learning Pathways and progress monitoring through tools such as the Skill Analysis Report and IEP Progress Monitoring. These allow teachers to select TEKS-aligned skills and monitor student understanding over time. For example, teachers can assign specific skills based on students' diagnostic results and track mastery through aligned instructional assessments.

## 4.1b – Questions and tasks, including enrichment and extension materials, increase in rigor and complexity, leading to grade-level and above grade-level proficiency in the mathematics TEKS.

The materials include questions and tasks that increase in rigor and complexity, supporting grade-level and above grade-level proficiency in the mathematics TEKS. For example, the Skill Plan for 1.3B builds from basic addition word problems to more complex subtraction and comparison word problems within 20, progressing from using objects and pictorial models to solving with unknowns in various positions.

The adaptive pathways in IXL Math provide scaffolded practice that promotes increasing rigor. For example, Skill L.1–L.3 moves from solving subtraction word problems using pictures to writing subtraction sentences and manipulating visual models (cube trains), supporting understanding aligned to grade-level TEKS.

Enrichment and extension materials increase in rigor and complexity through adaptive features and advanced content. For example, as students demonstrate proficiency, IXL presents more challenging tasks, such as multi-step problems and mastery-level questions, and offers targeted skills to extend learning beyond grade level via the Student Dashboard and teacher-assigned enrichment pathways.

#### 4.2 Coherence of Key Concepts

| GUIDANCE | SCORE SUMMARY                  | RAW SCORE |
|----------|--------------------------------|-----------|
| 4.2a     | All criteria for guidance met. | 1/1       |
| 4.2b     | All criteria for guidance met. | 1/1       |
| 4.2c     | All criteria for guidance met. | 4/4       |
| _        | TOTAL                          | 6/6       |

## 4.2a – Materials demonstrate coherence across concepts horizontally within the grade level by connecting patterns, big ideas, and relationships.

The materials demonstrate horizontal coherence by organizing skills in a logical learning sequence that reflects how mathematical understanding develops within the grade. For example, in the Skill Plan, addition and subtraction are taught independently before being integrated in mixed operations practice.

Concepts are connected through patterns, big ideas, and relationships to reinforce understanding. For example, skip counting by tens supports the development of place value by helping students recognize structure in the number system.

The materials group related skills within each Weekly Skill Plan to strengthen conceptual links across the grade level. For example, students begin with counting and basic operations, then move into place value and two-digit addition, building on prior knowledge to deepen understanding of number relationships.

## 4.2b – Materials demonstrate coherence vertically across concepts and grade bands, including connections from grade K-6, by connecting patterns, big ideas, and relationships.

Materials are organized so that core concepts build in complexity and depth across grade levels. For example, in place value, Kindergarten students learn to count by 10s and understand tens and ones, while grade 1 students extend this to comparing two sets of tens and ones up to 100 in Skill BB.1, "Use place value to compare numbers up to 100." Skills are grouped by domain rather than grade, allowing teachers and students to see how concepts progress vertically over time.

The program's diagnostic and recommendation system supports personalized learning paths, suggesting skills that address both prerequisite gaps and opportunities for acceleration. For instance, a student working on Skill A.1, "Counting review – up to 10" may be directed to Kindergarten skills such as "Representing numbers – up to 10" or "Count pictures – up to 10" before returning to grade-level work, while a student mastering grade 2 place value might be recommended an early grade 3 regrouping skill.

Materials provide multiple opportunities for students to practice concepts above and below grade level through features like the Diagnostic Hub and "Not feeling ready yet?" prompts. These tools identify

missed topics, offer targeted review, and extend learning beyond the current grade, reinforcing both readiness and enrichment.

## 4.2c – Materials demonstrate coherence across lessons or activities by connecting students' prior knowledge of concepts and procedures to the mathematical concepts to be learned in the current grade level and future grade levels.

Materials connect prior knowledge to new learning and prepare students for future concepts, ensuring coherence across lessons and grade levels. For example, in the Takeoff Lesson, understanding tens and ones, grade 1, students build on counting skills to develop grouping strategies, laying the groundwork for multiplication in grade 3.

Skills within domains are intentionally sequenced to increase in complexity. In the Takeoff Lesson, Make and Interpret tally charts, students review picture graphs from Kindergarten, then apply that knowledge to interpret tally charts and record and analyze data in tables, gradually deepening their understanding of data representation.

Lesson structures and supports reinforce connections between past and new learning. The Recommendation Wall provides access to skills from multiple grades, labeled by grade level, while daily instruction and lesson plans begin with familiar concepts before introducing new procedures, promoting ongoing conceptual growth.

#### 4.3 Coherence and Variety of Practice

| GUIDANCE | SCORE SUMMARY                  | RAW SCORE |
|----------|--------------------------------|-----------|
| 4.3a     | All criteria for guidance met. | 2/2       |
| 4.3b     | All criteria for guidance met. | 2/2       |
| _        | TOTAL                          | 4/4       |

## 4.3a - Materials provide spaced retrieval opportunities with previously learned skills and concepts across learning pathways.

The materials provide spaced retrieval opportunities for previously learned skills by embedding prior content into current lessons. For example, in the grade 1 Skill "Ways to make a number—tens and ones," students apply earlier knowledge of counting by tens and breaking apart numbers.

Concepts are reinforced over time by reappearing in multiple contexts and increasing in complexity across grades. The program embeds recurring exposure to key mathematical concepts like place value and fractions, increasing in complexity across grades. For example, students working on two-digit addition are prompted to revisit foundational place value skills from earlier lessons or grades.

Spiral review is integrated through Skill Plan that include a mix of current grade, review, and reinforcement activities. For example, concepts like fractions and place value are revisited in multiple grade levels to strengthen long-term retention and understanding.

## 4.3b - Materials provide interleaved practice opportunities with previously learned skills and concepts across learning pathways.

The materials provide interleaved practice opportunities by integrating previously learned skills into new tasks. For example, in the skill titled "Use place value to compare numbers up to 100," students apply prior understanding of tens and ones alongside comparison strategies.

Concepts are interleaved across Learning Pathways, allowing students to encounter familiar ideas in new contexts. For example, the grade 1 Weekly Plan for Week 32: "Fractions" revisits the concept of equal parts through multiple representations, such as identifying, making, and comparing halves and fourths.

IXL's Recommendation Wall and Skill Pathways include mixed-review tasks that draw from multiple domains and grade levels. For example, students may be prompted to practice addition, time, and fractions in a single session, supporting flexible problem solving and concept integration.

### 5. Balance of Conceptual and Procedural Understanding

Materials are designed to balance conceptual understanding, procedural skills, and fluency.

### 5.1 Development of Conceptual Understanding

| GUIDANCE | SCORE SUMMARY                  | RAW SCORE |
|----------|--------------------------------|-----------|
| 5.1a     | All criteria for guidance met. | 3/3       |
| 5.1b     | All criteria for guidance met. | 2/2       |
| 5.1c     | All criteria for guidance met. | 1/1       |
| _        | TOTAL                          | 6/6       |

### 5.1a – Questions and tasks provide opportunities for students to interpret, analyze, and evaluate models and representations for mathematical concepts and situations.

The materials include tasks that require students to interpret pictorial representations of mathematical concepts. For example, in the Skill "Addition with Pictures sums up to 10," students view two groups of objects (e.g., three stars and two stars) and select the correct total based on the image.

The materials provide opportunities for students to analyze mathematical models to support conceptual understanding. For example, in the Skill "Use Models to Add Two-Digit Numbers with Regrouping," students examine place value blocks to determine if there are enough ones to regroup and must identify how many tens and ones result.

The materials prompt students to evaluate the accuracy of mathematical representations. For example, in the Skill "Add by making 10 using ten frames," #9." students review number lines or counting sequences with embedded errors and must determine whether a pictorial representation correctly represents a mathematical idea.

### 5.1b – Questions and tasks provide opportunities for students to create concrete models and pictorial representations to represent mathematical situations.

The materials include tasks that require students to create concrete models in a digital environment. For example, in the Skill "Subtraction with Cubes numbers up to 10," students drag virtual cubes to model subtraction problems, simulating physical manipulatives.

The materials prompt students to construct pictorial representations to demonstrate mathematical understanding. For example, students write subtraction sentences based on a picture model, linking visual representations to symbolic notation.

The materials support the creation of pictorial and manipulative-style models through interactive visuals embedded in skill tasks. For example, students use base-ten blocks, counters, or diagrams to build and organize quantities in response to prompts requiring modeled solutions.

## 5.1c - Questions and tasks provide opportunities for students to apply conceptual understanding to new problem situations and contexts.

The materials include tasks that apply conceptual understanding to real-world contexts. For example, in the lesson "Subtract by counting back within 20," students are prompted to find 14 -5 by thinking of it as: "Start at 14. Count back 5 times," connecting subtraction to spatial reasoning and movement.

The materials present opportunities for students to apply learned concepts to unfamiliar problem formats. For example, in Skip Counting skills, students first count by twos, fives, and tens, then apply that understanding to identify patterns in tables, solve word problems, and continue number sequences.

The materials embed the application of concepts in problem-solving scenarios. For example, students read a word problem and must model and write an addition sentence to represent the situation, reinforcing understanding by connecting language, representation, and symbolic expression.

#### 5.2 Development of Fluency

| GUIDANCE | SCORE SUMMARY                  | RAW SCORE |
|----------|--------------------------------|-----------|
| 5.2a     | All criteria for guidance met. | 2/2       |
| 5.2b     | All criteria for guidance met. | 3/3       |
| 5.2c     | All criteria for guidance met. | 3/3       |
| 5.2d     | All criteria for guidance met. | 1/1       |
| _        | TOTAL                          | 9/9       |

### 5.2a – Materials provide tasks that are designed to build student automaticity and fluency necessary to complete grade-level mathematical tasks.

The materials provide tasks that build automaticity through repeated practice with foundational number facts and increasing independence. For example, the Adding Eight skill activity offers repeated exposure to equations with eight as an addend, helping students perform procedures quickly and accurately.

The materials support fluency development by combining scaffolded skill practice with adaptive learning, and varied representations. For example, a Skill Plan for counting and operations guides students through tasks that improve speed, accuracy, and flexible application of number facts.

The materials include interactive tools and games that engage students in fluency-building activities across multiple formats. For example, "Blast Off - Counting by Fives" is a drag-and-drop game that reinforces counting sequences while promoting fluency through engaging repetition.

### 5.2b – Materials provide opportunities for students to practice the application of efficient, flexible, and accurate mathematical procedures throughout learning pathways.

The materials provide opportunities for students to apply efficient mathematical procedures through scaffolded skill progressions that emphasize strategy development. For example, grade 1 addition practice moves from cubes and pictures to ten frames and number lines, culminating in "Addition sentences for word problems sum up to 10," where students apply their choice of strategy to solve and complete equations.

The materials support the flexible use of mathematical procedures by presenting tasks that allow multiple solution paths and representations. For example, in the Compose bigger 3D shapes lesson, students build a pictured object using one method and are then asked to find alternative ways to create the exact shape using different pieces.

The materials reinforce accurate mathematical procedures through real-time feedback and embedded error correction. For example, in "place-value" and "addition/subtraction" tasks, IXL provides instant explanations and corrective prompts that help students self-monitor and refine their procedural understanding.

## 5.2c – Materials provide opportunities for students to evaluate mathematical representations, models, strategies, and solutions for efficiency, flexibility, and accuracy throughout learning pathways.

The materials provide opportunities for students to evaluate mathematical efficiency by analyzing and selecting strategies that best fit a problem context. For example, in the Make a Ten lesson, students examine Mari's place value sketch to identify errors and explain whether making a ten is the most efficient approach for solving the problem.

The materials support flexibility by prompting students to compare and apply different models and representations across tasks. For example, in "Make ten to add," students select a number line that solves an equation and then use that model to complete the problem, reinforcing their ability to adapt strategies based on the situation.

The materials promote accuracy through reflective prompts, feedback, and evaluation tasks embedded within lessons. For example, students are asked to explain mistakes in provided models and justify their reasoning in tasks like "How do you know you need to make a ten?," which encourages verification and refinement of their solutions.

## 5.2d – Materials contain guidance to support students in selecting increasingly efficient approaches to solve mathematics problems.

The materials contain guidance that supports students in identifying and applying increasingly efficient strategies to solve math problems. For example, in the "Add Using Place Value Models: Make a Ten" lesson, students are encouraged to find totals by grouping tens and ones, use place value blocks to show regrouping, and solve using any method, reinforcing strategic decision-making based on efficiency.

The materials embed prompts that help students transition from less to more efficient strategies within skill sequences. For example, grade 1 addition and subtraction tasks prompt students to use approaches like making ten, counting on, or using doubles, which promote fluency through strategic selection.

The materials promote efficiency through skill progressions that move from concrete to abstract representations. For example, students begin with pictures or manipulatives and advance to number lines and equations. As they demonstrate accuracy, IXL recommends next-step skills that encourage more efficient reasoning and problem solving.

#### 5.3 Balance of Conceptual Understanding and Procedural Fluency

| GUIDANCE | SCORE SUMMARY                                                       | RAW SCORE |
|----------|---------------------------------------------------------------------|-----------|
| 5.3a     | Materials do not explicitly state how the conceptual and procedural | 0/2       |
| J.Ja     | emphases of the TEKS are addressed.                                 | 0/2       |
| 5.3b     | All criteria for guidance met.                                      | 3/3       |
| 5.3c     | All criteria for guidance met.                                      | 6/6       |
| _        | TOTAL                                                               | 9/11      |

### 5.3a – Materials explicitly state how the conceptual and procedural emphasis of the TEKS are addressed.

The materials do not explicitly state how the conceptual emphasis of the TEKS is addressed. While lessons include visual models and manipulatives to support understanding, such as cube trains to represent both sides of an equation in "Understand the equal sign," there is no embedded explanation of how this instruction aligns with the conceptual emphasis outlined in the TEKS.

The materials do not explicitly state how the procedural emphasis of the TEKS is addressed. For example, while skill activities provide step-by-step scaffolding to promote algorithmic fluency and repeated practice of operations, this emphasis is not explicitly articulated in terms of TEKS-aligned procedural expectations.

The materials do not include integrated guidance to help educators balance conceptual and procedural knowledge in alignment with the TEKS. For example, teachers may guide students from strip models to number sentences or explore fact families, but the materials do not explain how these activities support a balance between the why and the how of mathematics instruction.

## 5.3b – Questions and tasks provide opportunities for students to use concrete models, pictorial representations, and abstract models as required by the TEKS.

The materials include tasks that prompt students to engage with concrete models to support conceptual understanding; for example, in Skill DD.1 "Use models to add a multiple of ten and a one-digit number," students analyze visual base-ten blocks representing 20 + 3 and use that model to complete an abstract addition sentence.

Students work with pictorial representations to make meaning of mathematical relationships and connect to abstract forms; for example, in Skill P.2 "Addition sentences using number lines sums up to 20," students view a number line with hops illustrating addition and select the corresponding equation, promoting visual-to-symbolic understanding.

The materials include tasks that require abstract modeling, including writing number sentences and equations connected to visual and concrete prompts; for example, place value and addition lessons

transition from cube trains and diagrams to symbolic representations such as 20 + 3 = 23, supporting students in developing fluency with abstract forms of math reasoning.

## 5.3c - Materials include supports for students in connecting, creating, defining, and explaining concrete and representational models to abstract (symbolic/numeric/algorithmic) concepts, as required by the TEKS.

The materials support students in connecting concrete and representational models to abstract concepts through interactive tasks that gradually move from visual to symbolic representations. For example, in Skill DD.11 "Use models to add two-digit numbers with regrouping," students view base-ten blocks representing 19 + 14, then type the number of tens and ones before completing the equation.

Students have opportunities to create both concrete and representational models that align with abstract math concepts, such as using virtual manipulatives to build understanding of addition and subtraction. For example, in Skill H.5 "Model and write addition sentences for word problems sums up to 10," students drag and drop cubes to model a story and then construct a matching equation.

The materials include tasks that prompt students to define or explain how models relate to abstract math ideas, supporting deeper conceptual understanding. For example, in Skill KK.1 "Name the two-dimensional shape and explain your answer," students identify a shape and select a sentence that explains how they know, promoting reasoning that links visual attributes to abstract geometric terms.

#### 5.4 Development of Academic Mathematical Language

| GUIDANCE | SCORE SUMMARY                                                                                                                               | RAW SCORE |
|----------|---------------------------------------------------------------------------------------------------------------------------------------------|-----------|
| 5.4a     | All criteria for guidance met.                                                                                                              | 1/1       |
| 5.4b     | All criteria for guidance met.                                                                                                              | 2/2       |
| 5.4c     | All criteria for guidance met.                                                                                                              | 1/1       |
| 5.4d     | All criteria for guidance met.                                                                                                              | 2/2       |
| 5.4e     | Materials do not include embedded guidance to anticipate a variety of student answers, including exemplar responses to questions and tasks. | 1/2       |
| _        | TOTAL                                                                                                                                       | 7/8       |

### 5.4a – Materials provide opportunities for students to develop academic mathematical language using visuals, manipulatives, or other language development strategies.

The materials support students in developing mathematical language by embedding academic vocabulary within interactive tasks that connect visuals to key terms. For example, in the lesson "Order objects: length and height," students drag and drop vases on a number line labeled *shortest* to *tallest* to reinforce those terms.

The materials prompt students to describe mathematical ideas using accurate language tied to concrete representations and sentence frames. For example, in "Build and break apart two-digits numbers - with models," prompts such as "How many tens and ones are in 47?" elicit responses like 4 tens and 7 ones."

The materials include guidance to support students in using precise language to explain reasoning and compare mathematical concepts. For example, students use manipulatives and sentence stems to describe shapes as *halves* and *fourths*, or to compare length and quantity using terms like *equal*, *add*, and *combine*.

## 5.4b – Materials include embedded educator guidance to scaffold, support, and extend students' use of academic mathematical vocabulary in context when communicating with peers and educators.

The materials support students in using academic vocabulary to explain mathematical ideas through teacher prompts, sentence frames, and interactive activities. For example, in "Understand the equal sign," students complete the sentence frame "\_\_\_ has the same value as \_\_\_" to describe equations such as 4 + 4 = 8.

The materials include scaffolded supports that prompt students to describe, label, and justify using precise mathematical terms. "For example, in "Build and break apart two-digit numbers - with models," students respond to prompts like "How many tens and ones are in 43?" while labeling digital blocks with phrases such as *four tens*, *three ones*.

The materials encourage students to use math language in context by reading number sentences aloud, comparing quantities, and explaining reasoning through structured prompts. For example, in "Compare numbers up to 100 using symbols and words," students use sentence stems and comparative language to explain whether number sentences are true or false.

## 5.4c – Materials include embedded guidance to support student application of appropriate mathematical language and academic vocabulary in discourse.

The materials include embedded teacher guidance and prompts that support the use of appropriate mathematical language during discourse. For example, in the lesson "Compare lengths indirectly," students respond to questions such as "Is the toothbrush or the toothpaste longer?" and use terms like *shorter* and *longer* to explain comparisons.

The materials provide opportunities for students to engage in mathematical conversations using precise vocabulary, supported by sentence frames and discussion questions. For example, in "Understand time to the hour," students are prompted to explain how they know which time does not match, using terms such as *analog clock*, *digital clock*, *hour hand*, and *minute hand*.

The materials include instructional support that encourage academic language during collaborative learning activities. For example, in lessons where students count objects or interpret graphs, the additional support tabs suggest sentence frames, partner work, and guiding questions to promote math talk and vocabulary use in context.

### 5.4d – Materials include embedded guidance to facilitate mathematical conversations allowing students to hear, refine, and use math language with peers.

The materials include opportunities for students to engage in mathematical conversations that support their use of academic vocabulary and reasoning; for example, in the lesson "Understand tens and ones," students use linked cubes and a place value mat to model numbers and complete the sentence "18 is \_\_\_\_ ten and \_\_\_ ones" to describe their thinking aloud.

The materials embed prompts that encourage peer discussion and reflection on problem-solving strategies; for example, in "Addition Stories," students solve three-add end equations and share which numbers they added first, promoting the use of mathematical language in conversation.

The materials support collaborative learning through embedded features that encourage discourse; for example, additional supports for small-group tasks such as counting objects or interpreting graphs recommend using sentence frames, partner questioning, and modeling language through the Learn with an Example feature to help students engage in structured math talk.

## 5.4e – Materials include embedded guidance to anticipate a variety of student answers including exemplar responses to questions and tasks, including guidance to support and/or redirect inaccurate student responses.

Materials do not include embedded guidance to anticipate a variety of student answers, including exemplar responses to questions and tasks. While the program offers support for incorrect answers, it does not provide examples of anticipated student responses or model a range of correct and incorrect answers for teacher reference.

The materials include built-in supports that identify common misconceptions and offer targeted guidance when students answer incorrectly. For example, in the Skill "Add doubles," if students enter an incorrect response for 4 + 4, the program displays two rows of four dots to support conceptual understanding.

The materials provide real-time, adaptive prompts and redirection questions to address student errors and guide thinking. For example, embedded tips throughout lessons suggest alternative strategies and clarify misunderstandings without offering ideal sample answers, as seen in teacher-facing support for addressing errors in multi-step problems.

#### 5.5 Process Standards Connection

| GUIDANCE | SCORE SUMMARY                                                                                                                    | RAW SCORE |
|----------|----------------------------------------------------------------------------------------------------------------------------------|-----------|
| 5.5a     | All criteria for guidance met.                                                                                                   | 1/1       |
| 5.5b     | Materials do not include a description of how process standards are incorporated and connected throughout the learning pathways. | 0/2       |
| 5.5c     | All criteria for guidance met.                                                                                                   | 1/1       |
| _        | TOTAL                                                                                                                            | 2/4       |

#### 5.5a – TEKS process standards are integrated appropriately into the materials.

The materials integrate the TEKS mathematical process standards within interactive lessons that prompt students to model, represent, explain, and justify their thinking. For example, in the lesson "Add to and take from stories," students solve a word problem using a strip diagram, write a number sentence (content), and discuss whether their solution makes sense (process).

The materials embed opportunities for students to apply a problem-solving model that includes analyzing information, planning, solving, and justifying their responses (process). For example, in "Subtract by counting back within 20," students consider two different solution strategies for 17 – 3 and explain which one they agree with and why.

The materials include tasks that support reasoning and mathematical communication using visual aids and structured feedback. For example, in place value comparison lessons, students use symbols and vocabulary (content) to justify which number is greater (process).

### 5.5b – Materials include a description of how process standards are incorporated and connected throughout the learning pathways.

The materials do not include an overview of the TEKS process standards incorporated into each lesson. For example, while the Skill Plan list which activities address specific process standards, this information is not presented within the student learning pathways or lesson content.

Although the "Implementation Guide for Standards Prep" includes an overview YouTube video called, "IXL For Standards Prep," the video does not reference Texas TEKS. It references only California State Math Standards.

### 5.5c – Materials include an overview of the TEKS process standards incorporated into each lesson.

Materials include an overview of the TEKS process standards incorporated into each lesson. The TEKS Skill Plan includes a grade-specific TEKS overview that indicates which TEKS are aligned with which lesson,

organized by standard and skill. "Skill Plan" is designed in sequential order by TEKS and process standards skills. The TEKS are incorporated into each lesson by connecting the TEKS to the skill.

The materials embed process standards into the structure of lessons. For example, in the Skill "Count on ten frames," process standards, such as applying problem-solving strategies or representing with ten frames, are addressed implicitly.

The materials reference the TEKS process standards in broader planning documents, such as the IXL Skill Plan. For example, "Use models to solve word problems involving addition and subtraction" is linked to a process standard (1.1D) in the Texas Skill Plan.

### 6. Productive Struggle

Materials support students in applying disciplinary practices to productive problem-solving, including explaining and revising their thinking.

#### 6.1 Student Self-Efficacy

| GUIDANCE | SCORE SUMMARY                  | RAW SCORE |
|----------|--------------------------------|-----------|
| 6.1a     | All criteria for guidance met. | 3/3       |
| 6.1b     | All criteria for guidance met. | 3/3       |
| 6.1c     | All criteria for guidance met. | 3/3       |
| _        | TOTAL                          | 9/9       |

## 6.1a – Materials provide opportunities for students to think mathematically, persevere through solving problems, and to make sense of mathematics.

The materials prompt students to think mathematically through real-world tasks and visual models that promote conceptual understanding. For example, in the skill category "Skip-counting by twos," students watch a video explaining the concept and then count objects such as pairs of tennis shoes to answer, "How many shoes are there?"

The materials include embedded supports that encourage students to persevere through solving problems by providing strategic guidance and corrective feedback based on student responses. For example, in the Skill "Adding 10," if a student answers incorrectly, the program guides them through the problem using a number line and place value supports.

The materials support students in making sense of mathematics through scaffolded tasks, video-based instruction, and justification prompts that develop mathematical reasoning. For example, students engage in a multi-step skill that requires selecting the correct model for a word problem, supported by the "Learn with an Example" feature and an instructional video.

## 6.1b – Materials support students in understanding, explaining, and justifying that there can be multiple ways to solve problems and complete tasks.

The materials support students in understanding that there can be multiple ways to solve problems by presenting a variety of strategies and representations across tasks; for example, in the Skill "Understand addition," students encounter addition equations modeled with cubes, pictures, number lines, and number sentences.

The materials support students in explaining that there can be multiple ways to solve problems by embedding opportunities for students to share and describe their thinking; for example, students explore different strategies to count large quantities or find a missing number in a number sentence, and are encouraged to explain which method they used and why.

The materials support students in justifying that there can be multiple ways to solve problems by prompting reflection and comparison across different formats; for example, in the lesson "Understand time to the hour," students compare an analog clock, digital time, and time written in words to determine which one is different and explain how they know.

## 6.1c – Materials are designed to require students to make sense of mathematics through multiple opportunities for students to do, write about, and discuss math with peers and/or educators.

The materials include multiple opportunities for students to do math collaboratively with peers and educators through interactive, teacher-facilitated tasks. For example, the "Group Jam" feature allows teachers to assign the same problem to students for whole-class solving and review, creating shared problem-solving experiences.

The materials prompt students to write about math by embedding written response opportunities that require reflection and explanation. For example, in the lesson "Add using place value models: make a ten," students identify an error in Brad's work and are asked to write about the mistake and provide advice for correction.

The materials support students in discussing math with peers and educators by including structured opportunities for mathematical conversation. For example, in #2 of a related facts lesson, a "think and talk" prompt encourages students to share their strategies and reasoning aloud with others.

#### **6.2 Facilitating Productive Struggle**

| GUIDANCE | SCORE SUMMARY                  | RAW SCORE |
|----------|--------------------------------|-----------|
| 6.2a     | All criteria for guidance met. | 6/6       |
| 6.2b     | All criteria for guidance met. | 4/4       |
| _        | TOTAL                          | 10/10     |

## 6.2a – Materials support educators in guiding students to share and reflect on their problem-solving approaches, including explanations, arguments, and justifications.

The materials support educators in guiding students to share their problem-solving approaches through embedded prompts that encourage explanation, argument, and justification. For example, the lesson "Describe equal parts and the whole" guides teachers in facilitating discussions as students compare halves and quarters and explain which shapes have more or fewer equal parts, and why.

The materials include open-ended questions and teacher-facing discussion guides that promote student reflection on problem-solving strategies. For example, in #5, teachers prompt students to consider whether their answer makes sense, while #2 includes a "think and talk" prompt to help students reflect on using addition to solve a subtraction problem.

The materials offer tools and structures that help teachers facilitate collaborative reflection and justification of mathematical reasoning. For example, the Group Jam feature allows students to solve a common problem and share their approaches, supporting educator-led conversations that highlight multiple strategies and student reasoning.

## 6.2b – Materials include prompts and guidance to support educators in providing explanatory feedback based on student responses and anticipated misconceptions.

The materials include prompts to support educators in providing explanatory feedback based on student responses, helping guide students toward conceptual understanding. For example, in the Skill "Add three numbers," if a student answers 1 + 4 + 1 incorrectly, the program offers corrective feedback by identifying the mistake and prompting the student to add the double first.

The materials include guidance to support educators in addressing anticipated misconceptions through embedded teacher notes and targeted feedback cues. For example, in #3 of the lesson "Take apart stories," teacher guidance anticipates that students may default to writing only an addition sentence and suggests prompting them to consider a subtraction sentence as well.

The materials provide tools such as real-time analytics, built-in tips, and sample student responses to help educators tailor feedback based on student needs and learning gaps. For example, "Tips for support," #2, guides teachers to respond to how students count objects, and pre-built lesson plans include suggested questions and strategies for addressing common errors.