

Savvas Learning Company LLC

English Mathematics, Algebra II

ENVISION+ TEXAS AGA 2027 (PRINT AND DIGITAL), ALGEBRA II

MATERIAL TYPE	ISBN	FORMAT	ADAPTIVE/STATIC
Full-Subject, Tier-1	9798213463460	Both Print and Digital	Static

Rating Overview

TEKS SCORE	ELPS SCORE	ERROR CORRECTIONS (IMRA Reviewers)	SUITABILITY NONCOMPLIANCE	SUITABILITY EXCELLENCE	PUBLIC FEEDBACK (COUNT)
100%	100%	2	Flags Not in Report	Flags in Report	0

Quality Rubric Section

RUBRIC SECTION	RAW SCORE	PERCENTAGE
1. Intentional Instructional Design	28 out of 28	100%
2. Progress Monitoring	26 out of 26	100%
3. Supports for All Learners	27 out of 27	100%
4. Depth and Coherence of Key Concepts	19 out of 19	100%
5. Balance of Conceptual and Procedural Understanding	41 out of 41	100%
6. Productive Struggle	22 out of 22	100%

Breakdown by Suitability Noncompliance and Excellence Categories

SUITABILITY NONCOMPLIANCE FLAGS BY CATEGORY	IMRA REVIEWERS	PUBLIC	Flags NOT Addressed by November Vote
1. Prohibition on Common Core	0	0	0
2. Alignment with Public Education's Constitutional Goal	0	0	0
3. Parental Rights and Responsibilities	0	0	0
4. Prohibition on Forced Political Activity	0	0	0
5. Protecting Children's Innocence	0	0	0
6. Promoting Sexual Risk Avoidance	0	0	0
7. Compliance with the Children's Internet Protection Act (CIPA)	0	0	0

SUITABILITY EXCELLENCE FLAGS BY CATEGORY	IMRA REVIEWERS
Category 2: Alignment with Public Education's Constitutional Goal	110
Category 6: Promoting Sexual Risk Avoidance	0

IMRA Quality Report

1. Intentional Instructional Design

Materials support educators in effective implementation through intentional course and lesson-level design.

1.1 Course-Level Design

GUIDANCE	SCORE SUMMARY	RAW SCORE
1.1a	All criteria for guidance met.	4/4
1.1b	All criteria for guidance met.	2/2
1.1c	All criteria for guidance met.	2/2
1.1d	All criteria for guidance met.	2/2
1.1e	All criteria for guidance met.	2/2
—		TOTAL 12/12

1.1a – Materials include a scope and sequence outlining the TEKS, ELPS, and concepts taught in the course.

EnVision+ Texas Algebra II includes a comprehensive "Scope and Sequence" that outlines the TEKS and ELPS and lists the mathematical concepts taught throughout the year. These standards are presented in numerical order and explicitly correlated to individual lessons. The scope and sequence is available in multiple pacing versions to accommodate different school calendars (165, 180, and 210 days) and is located in the front matter of the *Teacher's Edition* and Texas Reviewer Materials folder. It includes lesson numbers, objectives, pacing, and required instructional materials.

EnVision+ Texas Algebra II features a calendar view that maps lessons to the Texas Essential Knowledge and Skills (TEKS) for each unit, reinforcing the alignment. The TEKS and English Language Proficiency Standards (ELPS) are also embedded at the start of each lesson and cross-referenced in separate TEKS and ELPS Breakout Citations documents, which indicate where each standard is addressed in the *Teacher's Edition*.

1.1b – Materials include suggested pacing (pacing guide/calendar) to support effective implementation for various instructional calendars (e.g., varying numbers of instructional days – 165, 180, 210).

EnVision+ Texas Algebra II includes pacing guides embedded within the "Scope and Sequence" documents that specify the number of instructional days allocated for each TEKS.

EnVision+ Texas Algebra II offers three pacing options aligned with different school calendars—specifically 165, 180, and 210 instructional days. These guides are available in the Texas Reviewer Materials and list each topic alongside suggested days and the TEKS alignment.

EnVision+ Texas Algebra II provides daily pacing suggestions tailored to class period length, including guidance for both 45–50 minute and 90-minute instructional blocks.

1.1c – Materials include an explanation for the rationale of unit order as well as how concepts to be learned connect throughout the course.

EnVision+ Texas Algebra II provides a clear rationale for the sequence of units and lessons, emphasizing coherence and conceptual progression throughout the course. Each unit includes a math background section that identifies key concepts and explains how they build on students' prior knowledge while preparing them for future learning.

EnVision+ Texas Algebra II explicitly describes the purpose and order of each unit, detailing how concepts are grouped and connected. For example, in Lesson 1-1, students apply previous knowledge of creating and analyzing graphs to identify and interpret key features such as domain, range, and intercepts.

EnVision+ Texas Algebra II explains how topics are intentionally grouped, for instance, Topics 1-4 involve modeling with linear, quadratic, and absolute value functions, while Topics 5-6 focus on operations with rational expressions.

1.1d – Materials include protocols with corresponding guidance for unit and lesson internalization.

EnVision+ Texas Algebra II materials include detailed math background sections that break down key concepts and provide coherence across mathematical domains and grade levels.

EnVision+ Texas Algebra II provides unit and lesson internalization protocols for both teachers and instructional coaches. These internalization guides include structured prompts and checklists for preparing instructions. For unit internalization, teachers are provided with reminders related to the scope and sequence, guidance on how to assess understanding, and strategies for gathering and organizing materials.

EnVision+ Texas Algebra II offers detailed guidance on setting lesson goals, pacing, transitions, and preparation of instructional resources. The protocols also address the diverse needs of students, offering support for differentiation and scaffolding strategies. Additionally, teachers are prompted to use concept summary activities that allow students to articulate how and why mathematical ideas work.

1.1e – Materials include resources and guidance for instructional leaders to support teachers with implementing the materials as designed.

EnVision+ Texas Algebra II materials include comprehensive resources for instructional leaders and coaches to support teachers in implementing the curriculum as intended. These supports are delivered

through various structured tools, including an "Instructional Leader's Topic Internalization Protocol," an "Instructional Leader's Lesson Internalization Protocol," and a "Student Analysis Protocol."

EnVision+ Texas Algebra II includes observational tools and internalization documents that guide instructional coaches in helping teachers understand what students are expected to learn, how learning will be assessed, and how lessons fit within the broader instructional sequence.

Each lesson in *enVision+ Texas Algebra II* is structured into four clearly defined phases: "Explore," "Understand & Apply," "Practice and Problem Solving," and "Assess & Differentiate," providing detailed instructional guidance to promote conceptual understanding, procedural fluency, and application supporting high-quality implementation aligned with the TEKS and ELPS.

1.2 Unit-Level Design

GUIDANCE	SCORE SUMMARY	RAW SCORE
1.2a	All criteria for guidance met.	2/2
1.2b	All criteria for guidance met.	2/2
—		TOTAL 4/4

1.2a – Materials include comprehensive unit overviews that provide the background content knowledge and academic vocabulary necessary to effectively teach the concepts in the unit.

EnVision+ Texas Algebra II includes comprehensive unit overviews that provide both the background content knowledge and academic vocabulary necessary to effectively teach the mathematical concepts in each unit, including the topic of functions.

Each topic in the *enVision+ Texas Algebra II Teacher's Edition* includes a "Math Background" section that highlights key concepts and coherence across prior and future lessons, supporting continuity in instruction. For vocabulary development, the materials include a "Linguistic Accommodations" section at the beginning of each topic.

1.2b – Materials contain supports for families in both Spanish and English for each unit with suggestions on supporting the progress of their student.

EnVision+ Texas Algebra II provides a range of family engagement resources in both English and Spanish to support students' learning at home. These resources are accessible via a toggle feature on the Family Engagement website.

For each unit, families are provided with an overview of instructional content, including examples, concept summaries, video tutorials, practice activities, and assessment tools. A dedicated section titled, "How Can You Help With Homework" offers lesson-specific guidance, vocabulary reviews, and suggested prompts to facilitate discussion between students and caregivers.

EnVision+ Texas Algebra II integrates a "Metalinguistic Transfer" component, which outlines transferable and non-transferable language skills between English and Spanish and includes references to the ELPS by lesson, supporting both language development and academic content understanding.

EnVision+ Texas Algebra II offers visual strategies and at-home activities that connect classroom instruction to real-world experiences. For example, in units on transformations, families are encouraged to discuss real-world analogies, such as stretching or compressing nesting dolls, and explore related mathematical vocabulary through visual examples of transformations.

1.3 Lesson-Level Design

GUIDANCE	SCORE SUMMARY	RAW SCORE
1.3a	All criteria for guidance met.	8/8
1.3b	All criteria for guidance met.	3/3
1.3c	All criteria for guidance met.	1/1
—		TOTAL 12/12

1.3a – Materials include comprehensive, structured, detailed lesson plans that include daily objectives, questions, tasks, materials, and instructional assessments required to meet the content and language standards of the lesson (aligned with the TEKS and the ELPS).

EnVision+ Texas Algebra II provides comprehensive, structured lesson plans embedded throughout each topic. These plans include clearly stated mathematics objectives, language objectives, essential questions, vocabulary, and alignment to both the TEKS and the ELPS.

Each lesson in *enVision+ Texas Algebra II* includes a lesson overview outlining daily objectives and instructional components, such as tasks, materials, and assessments. Lesson sections—"Explore," "Understand & Apply," "Practice and Problem Solving," and "Assess & Differentiate"—are designed to address both conceptual understanding and procedural skill, supporting a rigorous instructional approach.

EnVision+ Texas Algebra II includes targeted ELPS supports and language development guidance. For example, lessons feature "Before, During, and After" instructional prompts to guide implementation, encourage productive struggle, and promote mathematical discourse. Specific supports include language routines and "Talk about Math Ideas" activity.

1.3b – Materials include a lesson overview listing the teacher and student materials necessary to effectively deliver the lesson, and the suggested timing for each lesson component.

EnVision+ Texas Algebra II includes a lesson overview for each lesson that lists the necessary teacher and student materials, such as manipulatives, templates, activity pages, and references to Teacher Resource Originals. These materials are included at the start of each lesson and are accompanied by information on how they support student learning.

Each lesson in *enVision+ Texas Algebra II* contains a timeline organized around the four instructional phases: "Explore," "Understand & Apply," "Practice and Problem Solving," and "Assess & Differentiate." The materials also provide the total number of instructional days recommended for each lesson, allowing for long-term pacing across the unit or course. In addition, the Pick a Project activity at the beginning of

lessons (e.g., Lesson 1-1,) includes a list of materials for each project, student worksheets, and teacher guidance for supporting project selection, pacing, grouping, and extensions. Scoring guides are also provided.

EnVision+ Texas Algebra II includes overall lesson duration; however, it does not provide specific time allocations for individual components such as inquiry, direct instruction, or collaborative work. Despite this limitation, the lesson structure is aligned to the TEKS, ELPS, college and career readiness standards, and mathematical process skills, with overviews clarifying teacher and student roles and expected learning outcomes.

1.3c – Materials include guidance on the effective use of lesson materials for extended practice (e.g., homework, extension, enrichment).

EnVision+ Texas Algebra II provides clear guidance on the effective use of extended practice opportunities, including homework, enrichment, and reteach activities. These supports are embedded within lesson components and tailored to students' varying levels of understanding.

Each lesson in *enVision+ Texas Algebra II* includes a "Practice and Problem Solving" section and an "Extending Student Thinking" task linked to a specific example.

EnVision+ Texas Algebra II offers a Differentiated Resource page (e.g., in Lesson 1-1 on Functions), which includes materials for reteaching, additional practice, enrichment, and expanded learning. The "Assess & Differentiate section, located at the end of lessons (such as Chapter 1.1), provides teachers with guidance on selecting appropriate practice based on student performance.

EnVision+ Texas Algebra II promotes engagement in extended practice through interactive strategies like the "Talk About Math" routine, where students are encouraged to discuss understanding through questions such as "Do you understand?" and "Do you know how?"

2. Progress Monitoring

Materials support educators in effective implementation through frequent, strategic opportunities to monitor and respond to student progress.

2.1 Instructional Assessments

GUIDANCE	SCORE SUMMARY	RAW SCORE
2.1a	All criteria for guidance met.	9/9
2.1b	All criteria for guidance met.	2/2
2.1c	All criteria for guidance met.	2/2
2.1d	All criteria for guidance met.	6/6
2.1e	All criteria for guidance met.	2/2
—		TOTAL 21/21

2.1a – Materials include a variety of instructional assessments at the unit and lesson level (including diagnostic, formative, and summative) that vary in types of tasks and questions.

EnVision+ Texas Algebra II includes diagnostic and summative assessments at the unit level that vary in both task types (e.g., readiness checks, performance tasks) and question types (e.g., multiple choice, open-ended).

EnVision+ Texas Algebra II provides formative assessments at the lesson level, such as "Try It," "Do You Understand?", "Exit Tickets," "Quick Checks," and "Practice and Problem Solving," which vary in both the types of tasks and the types of questions.

EnVision+ Texas Algebra II includes summative assessments at the lesson level, including "Quick Checks" and "Additional Practice," that vary in task structure and question formats.

EnVision+ Texas Algebra II provides multiple versions of unit-level assessments, such as "Topic Reviews," "Topic Assessments," and "Performance Tasks," offering repeated opportunities for teachers to assess student understanding using a variety of task types and question formats.

2.1b – Materials include the definition and intended purpose for the types of instructional assessments included.

EnVision+ Texas Algebra II includes definitions for the types of instructional assessments provided in the materials. At the beginning of the *Teacher's Edition*, under the section "Navigating a Lesson in your Teacher's Edition," each step and part of the steps are defined. For example, Step 2k: "Exit Tickets" is defined as a tool for checking students' understanding of concepts early in the lesson. The "Assess & Differentiate" section also includes definitions of summative assessments.

EnVision+ Texas Algebra II includes the intended purpose of instructional assessments. For example, the "Exit Ticket" in Lesson 4-3, Step 2, is intended to inform instructional decisions, and instructional implications are provided for each student's answer choice. The "Assess & Differentiate" section describes summative assessments as tools for evaluating learning, skill acquisition, and achievement at the end of a unit, and includes examples of how they can be used for reteaching or reassessment. The materials also include examples of how to use formative assessments such as "Quick Checks," "Warm-Ups," "Think-Pair-Share" activities, and "Exit Tickets."

2.1c – Materials include teacher guidance to ensure consistent and accurate administration of instructional assessments.

EnVision+ Texas Algebra II provides teacher guidance to support the consistent administration of assessments. The materials specify whether an assessment is a course readiness or topic readiness assessment and indicate the best times for administration. The Assessment Guide contains a section titled, "Why and When to Assess," which outlines when assessments should be given. The materials also include reminders and tips for time allotment and step-by-step guidance for administering each component of the assessment.

EnVision+ Texas Algebra II includes guidance to support accurate administration of assessments. The Assessment Guide includes a "What to Assess" section and a "How to Assess" section, which describe procedures for each assessment type. The "Assessment Data" section contains answer keys to align teacher understanding with assessment expectations.

2.1d – Diagnostic, formative, and summative assessments are aligned to the TEKS and objectives of the course, unit, or lesson.

EnVision+ Texas Algebra II includes diagnostic assessments that are aligned to the TEKS of the course. Topic Readiness Assessments appear at the start of each topic and are aligned to the course standards, with the TEKS listed next to assessment items or included within rubrics.

EnVision+ Texas Algebra II includes diagnostic assessments that are aligned to the objectives of the unit or lesson. Topic Readiness Assessments evaluate prerequisite concepts and skills related to the upcoming unit or lesson and are used to generate personalized study plans.

EnVision+ Texas Algebra II includes formative assessments that are aligned to the TEKS of the course. "Try It!," "Do You Understand?," "Do You Know How?," and "Exit Tickets" appear throughout lessons and are aligned to the TEKS.

EnVision+ Texas Algebra II includes formative assessments that are aligned to the objectives of the unit or lesson. The materials indicate when to assign assessments in relation to specific lesson objectives.

EnVision+ Texas Algebra II includes summative assessments that are aligned to the TEKS of the course. "Topic Assessments" (Form A and Form B), "Performance Tasks" (Form A and Form B), "Exit Tickets," and "Benchmark Assessments" include the TEKS alignment indicated next to assessment items or in rubrics.

EnVision+ Texas Algebra II includes summative assessments that are aligned to the objectives of the unit or lesson. The assessments are given at the end of a topic, after a group of topics, or at the end of the year and reflect the objectives of the instructional content.

2.1e – Instructional assessments include TEKS-aligned items at varying levels of complexity.

EnVision+ Texas Algebra II includes instructional assessments with TEKS-aligned items at varying levels of complexity. The Item Analysis Chart for Topic 7: "Quick Check" lists five items aligned to two Depth of Knowledge (DOK) levels, and includes the TEKS alignment.

EnVision+ Texas Algebra II also includes instructional assessments with TEKS-aligned items at more than two levels of complexity. The Item Analysis Chart for Topic 7: "Practice and Problem Solving" lists 44 items aligned to three DOK levels, along with the corresponding TEKS.

2.2 Data Analysis and Progress Monitoring

GUIDANCE	SCORE SUMMARY	RAW SCORE
2.2a	All criteria for guidance met.	2/2
2.2b	All criteria for guidance met.	1/1
2.2c	All criteria for guidance met.	2/2
—		TOTAL 5/5

2.2a – Instructional assessments and scoring information provide guidance for interpreting student performance.

EnVision+ Texas Algebra II includes instructional assessments that guide teachers in interpreting student performance. For example, the materials include formative assessments designed to help modify instruction, review, or revisit content. The *Teacher's Edition* includes "Common Errors" callouts, such as in Topic 1, Lesson 2, Step 2: "Understand & Apply," which highlight student misconceptions and provide strategies for support.

EnVision+ Texas Algebra II includes scoring information to support interpretation of assessment data. In Lessons 1-3, the "Assess & Differentiate" section provides a quick check assessment with a rubric that offers clear guidelines for evaluating student responses. The "Assessment Resource Assessment Data" includes a table to help teachers analyze assessment results to form student groups or assign differentiated activities. Additionally, guidance is provided on using item analysis reports from the "Practice and Problem Solving" section to examine performance on TEKS-aligned skills.

2.2b – Materials provide guidance for the use of included tasks and activities to respond to student trends in performance on assessments.

EnVision+ Texas Algebra II includes guidance for teachers on how to use assessment results to inform instruction. For example, each lesson concludes with a Step 4: "Assess & Differentiate" section that includes a "Quick Check" to evaluate student performance, followed by differentiated resources. These resources offer reteach activities, additional practice, and vocabulary support for students needing remediation. Materials also include enrichment options and "Expand Your Knowledge" tasks to extend learning for advanced students. Lessons 1-4 specifically include resources to support understanding of transformations of absolute value functions and instructional guidance in the "Explore & Share" section to help target specific skills during small-group instruction. Additionally, the "Do You Know" section checks conceptual understanding and offers teachers suggestions on reviewing or revisiting content based on student responses.

2.2c – Materials include tools for teachers to track student progress and growth, and tools for students to track their own progress and growth.

EnVision+ Texas Algebra II includes tools for teachers to track student progress and growth. The materials provide "Exit Tickets" that allow teachers to check student understanding during lessons and identify misconceptions. The "Assessment Resource" section includes tools for generating data reports that help teachers track student performance at both the individual, and class level.

EnVision+ Texas Algebra II includes tools for students to track their own progress and growth. Lesson features such as "Do You Understand?" and "Do You Know How?" allow students to assess their understanding of lesson content. Additionally, students can annotate their work in the "Student Companion" book, which functions as a data tracker for recording performance on tasks such as quizzes and practice problems.

3. Supports for All Learners

Materials support educators in reaching all learners through design focused on engagement, representation, and action/expression for learner variability.

3.1 Differentiation and Scaffolds

Guidance marked with a (T) refers to teacher-facing components. Guidance with an (S) refers to student-facing components.

GUIDANCE	SCORE SUMMARY	RAW SCORE
3.1a	All criteria for guidance met.	3/3
3.1b	All criteria for guidance met.	2/2
3.1c	All criteria for guidance met.	2/2
—		TOTAL 7/7

3.1a – Materials include teacher guidance for differentiated instruction, activities, and paired (scaffolded) lessons for students who have not yet reached proficiency on grade-level content and skills.

EnVision+ Texas Algebra II includes teacher guidance for differentiated instruction for students who have not yet reached proficiency on grade-level content and skills. For example, in Topic 2, Lesson 1, the "Support Student Understanding" section outlines specific difficulties students may encounter and provides reteaching strategies. In Lesson 1-2, Step 2, Example 2, the materials offer targeted support in understanding transformations of functions, allowing for tailored intervention. *EnVision+ Texas Algebra II* provides differentiated activities through the use of "Quick Checks," such as in Topic 2, Lesson 1, Step 4. Based on student performance, the "Quick Check" automatically assigns students to activities aligned with their learning needs. *EnVision+ Texas Algebra II* includes scaffolded, paired lessons designed for students who have not yet demonstrated proficiency. For example, Topic 2-2 features the Language Routine "Three Reads," where students work in pairs to discuss mathematical texts. In Lesson 1-2, Step 2, Example 6, the lesson integrates real-world scenarios to guide students in analyzing and interpreting function transformations with scaffolded support.

3.1b – Materials include pre-teaching or embedded supports for unfamiliar vocabulary and references in text (e.g., figurative language, idioms, academic language). (T/S)

EnVision+ Texas Algebra II includes pre-teaching and embedded supports for unfamiliar vocabulary in mathematical texts. In Topic 2-2, the "Collect and Display" Language Routine prompts students to identify and record key terms with their peers. In Lesson 2-9, targeted ELPS support provides additional strategies using visuals and manipulatives to reinforce vocabulary such as "reflective" and "parabolic dish." *EnVision+ Texas Algebra II* supports unfamiliar references in mathematical texts through embedded scaffolds. Topic 2 includes a "Vocabulary in Context" section within the Linguistic Accommodations, which defines terms and offers alternate meanings. Lesson 2-9 further provides a "Talk about Math Ideas"

activity, where students engage in structured conversations using academic language related to directrix, focus, conics, and parabolas.

3.1c – Materials include teacher guidance for differentiated instruction, enrichment, and extension activities for students who have demonstrated proficiency in grade-level content and skill.

EnVision+ Texas Algebra II includes teacher guidance for differentiated instruction for students who have demonstrated proficiency in grade-level content and skills. In Topic 2, Lesson 1, Step 4, students complete a "Quick Check," which determines their understanding and assigns them to "Expand the Learning" activities, such as interactive games and projects tailored to extend their knowledge. *EnVision+ Texas Algebra II* offers enrichment and extension opportunities throughout the program. In Lesson 5-5, Step 1, the "For Early Finishers" section provides additional challenges for students who have mastered solving rational equations. In Step 2 of the same lesson, "Extend Student Thinking" encourages deeper exploration of the topic. Additionally, in Topic 1, students select from interest-based "Pick a Project" options, and each lesson concludes with an Enrichment task to further extend learning.

3.2 Instructional Methods

GUIDANCE	SCORE SUMMARY	RAW SCORE
3.2a	All criteria for guidance met.	4/4
3.2b	All criteria for guidance met.	2/2
3.2c	All criteria for guidance met.	3/3
—		TOTAL 9/9

3.2a – Materials include explicit (direct) prompts and guidance to support the teacher in modeling and explaining the concept(s) to be learned.

EnVision+ Texas Algebra II materials include explicit prompts to support teachers in modeling and explaining concepts. Each lesson begins with an "Explore & Share" section that provides clear guidance on lesson flow, guiding questions, and example responses to facilitate conceptual understanding. For example, Lesson 1-5, Step 1, "Explore & Share" includes numerous guiding questions with expected answers and a "Process Standards Connection" to help teachers model math thinking processes throughout the topic.

EnVision+ Texas Algebra II includes fully worked-out, annotated solutions with direct prompts to elicit student explanations. Lesson 1-5, Step 2, "Understand & Apply," Example 1, Understand Absolute Value Equations, offers step-by-step solutions and instructs teachers on specific questions to ask, ensuring students build conceptual understanding. Lesson 3-2, Solving Linear Systems Using Matrices, includes think-aloud "Math Talk" prompts and teacher modeling questions such as, "How are the coefficients and constants of a system of equations related to a matrix?" to support student learning effectively.

3.2b – Materials include teacher guidance and recommendations for effective lesson delivery and facilitation using a variety of instructional approaches.

EnVision+ Texas Algebra II materials provide teacher guidance and recommendations for effective lesson delivery using a variety of instructional approaches. Lesson 1-5 "Explore & Share" guides teachers to use whole-class questioning and discussion before and after instruction, along with small group collaborative work during instruction to deepen learning. Lesson 1-4 "Explore & Share" also includes differentiated instruction recommendations for early finishers, adding a third instructional approach to support diverse learners.

EnVision+ Texas Algebra II includes Lesson 5-4 Adding and Subtracting Rational Expressions, Step 2 "Understand & Apply," Example 1, which uses multiple approaches, such as written justifications, think-pair-share language routines, and discourse prompts to promote mathematical reasoning. Lesson 5-4, "Explore & Share" and "Exit Ticket," guides teachers to use exit tickets to check student understanding and address misconceptions, ensuring effective facilitation of learning outcomes.

3.2c – Materials support multiple types of practice (e.g., guided, independent, collaborative) and include guidance for teachers and recommended structures (e.g., whole group, small group, individual) to support effective implementation.

EnVision+ Texas Algebra II materials support multiple types of practice to ensure effective implementation. Lesson 1-4 includes guided practice problems, auto-graded adaptive digital practice, spiral review, and additional exercises to promote student choice and mastery. Lesson 1-5, Step 3 "Practice and Problem Solving" offers problems of varying difficulty levels, an "Engage Through Student Choice" section to build student agency, and an Item Analysis feature to help teachers tailor assignments.

EnVision+ Texas Algebra II includes Lesson 6-8, Inverse Relations and Functions, Step 1, "Explore & Share," which guides teachers to implement instructional routines in whole group, small group, and individual structures. Example prompts such as, "What is the first step to find an inverse equation?" support collaborative and independent learning. Lesson 6-8, Example 4: "Compare and Connect" engages students in collaborative discussion to justify reasoning when finding inverses of functions, ensuring practice is varied and structured.

3.3 Support for Emergent Bilingual Students

An emergent bilingual student is a student who is in the process of acquiring English and has another language as the primary language. The term emergent bilingual student replaced the term English learner in the Texas Education Code 29, Subchapter B after the September 1, 2021 update. Some instructional materials still use English language learner or English learner and these terms have been retained in direct quotations and titles.

GUIDANCE	SCORE SUMMARY	RAW SCORE
3.3a	All criteria for guidance met.	2/2
3.3b	All criteria for guidance met.	1/1
3.3c	All criteria for guidance met.	8/8
3.3d	This guidance is not applicable to the program.	N/A
—		TOTAL 11/11

3.3a – Materials include teacher guidance on providing linguistic accommodations for various levels of language proficiency [as defined by the English Language Proficiency Standards (ELPS)], which are designed to engage students in using increasingly more academic language.

EnVision+ Texas Algebra II materials include teacher guidance on providing linguistic accommodations for various levels of language proficiency as defined by the ELPS. For example, Lesson 2-7, Modeling with Quadratic Functions, Step 2 "Understand & Apply," Example 1 includes Targeted ELPS Support for preproduction, beginning, intermediate, high intermediate, and advanced levels. Teachers are guided to use gestures for preproduction students and sentence stems, graphic organizers, and Frayer models for advanced students to deepen vocabulary knowledge. The guidance progresses in rigor, culminating with advanced students reading definitions and composing sentences using each vocabulary word to engage in academic discourse.

EnVision+ Texas Algebra II includes linguistic accommodations embedded in Topic 1 and Topic 2, such as "Metalinguistic Transfer to Spanish," "Cognates," and "Vocabulary in Context." These sections support teachers in helping students connect prior language knowledge with new content vocabulary. For example, Lesson 3-3's Targeted ELPS Support for Speaking 2E guides teachers to explicitly teach the meaning of the term *region* within the math context and engages advanced students in using the term to explain their reasoning, fostering academic language development across proficiency levels.

3.3b – Materials include implementation guidance to support teachers in effectively using the materials in state-approved bilingual/ESL programs.

EnVision+ Texas Algebra II materials provide implementation guidance to support teachers in effectively using the materials in state-approved bilingual and English as a Second Language (ESL) programs. Each

lesson includes language objectives aligned with ELPS standards and embedded instructional routines. For instance, Lesson 1-1, Key Features of Functions, includes objectives requiring students to read definitions and descriptions and discuss which graphs from the warm-up can or cannot be classified as functions, integrating both content and language development.

EnVision+ Texas Algebra II further supports teachers through its ELPS correlation guides at the beginning of the "Teacher Edition," mapping lessons to specific language domains: listening, speaking, reading, and writing. "Linguistic Accommodations" in Topics 1 and 2 include "Metalinguistic Transfer to Spanish" and "Cognates," providing strategies for leveraging students' first language to enhance comprehension and vocabulary acquisition within content instruction.

3.3c – Materials include embedded guidance for teachers to support emergent bilingual students in developing academic vocabulary, increasing comprehension, building background knowledge, and making cross-linguistic connections through oral and written discourse.

EnVision+ Texas Algebra II materials include embedded guidance for teachers to support emergent bilingual students in developing academic vocabulary, increasing comprehension, building background knowledge, and making cross-linguistic connections through oral and written discourse. For example, Topic 1 Linguistic Accommodations includes "Vocabulary in Context" to clarify math terms in everyday language, "Metalinguistic Transfer to Spanish" for cross-language connections, and "Cognates" to build background knowledge using words with shared origins.

EnVision+ Texas Algebra II emphasizes oral and written discourse integration. Lesson 2-8 Quadratic Inequalities, Examples 1-2, and Targeted ELPS Support engage students in annotating problems, discussing strategies with peers, and writing explanations using precise mathematical language. Prompts such as, "What is the purpose of testing at least two points?" build academic vocabulary while strengthening comprehension. Lesson 2-8 ,Focus and Directrix of Parabolas, Example 4, similarly integrates reading, writing, listening, and speaking tasks, with sentence stems and collaborative discussions guiding students in constructing written and oral explanations using academic vocabulary.

3.3d – If designed for dual language immersion (DLI) programs, materials include resources that outline opportunities to address metalinguistic transfer from English to the partner language.

This guidance is not applicable because the program is not designed for dual language immersion (DLI) programs.

4. Depth and Coherence of Key Concepts

Materials are designed to meet the rigor of the standards while connecting concepts within and across grade levels/courses.

4.1 Depth of Key Concepts

GUIDANCE	SCORE SUMMARY	RAW SCORE
4.1a	All criteria for guidance met.	2/2
4.1b	All criteria for guidance met.	1/1
—		TOTAL 3/3

4.1a – Practice opportunities over the course of a lesson and/or unit (including instructional assessments) require students to demonstrate depth of understanding aligned to the TEKS.

EnVision+ Texas Algebra II includes practice opportunities over the course of a lesson and unit that require students to demonstrate depth of understanding aligned to the TEKS. Lessons include components such as "Try It," "Do You Know," and "Practice and Problem Solving," where tasks increase in complexity and depth. For example, in Topic 1, Step 3: Practice and Problem Solving, students complete tasks at various cognitive levels, such as listing numbers (DOK1), analyzing situations (DOK2), and justifying arguments (DOK3). These practice items are aligned to the TEKS, as identified in the Item Analysis.

EnVision+ Texas Algebra II includes instructional assessments that require students to demonstrate depth of understanding aligned to the TEKS. In Topic 2, the Performance Task includes items that ask students to write an equation based on a prediction and explain (DOK4), identify slope and y-intercept and explain (DOK3), and select a graph and justify the choice (DOK2). These assessment items are aligned to the TEKS, as shown in the Performance Task Scoring Guide.

4.1b – Questions and tasks progressively increase in rigor and complexity, leading to grade-level proficiency in the mathematics TEKS.

EnVision+ Texas Algebra II includes questions and tasks that progressively increase in rigor and complexity, leading to grade-level proficiency in the mathematics TEKS. Each lesson is structured in four sequential steps: Step 1 focuses on activating and connecting prior knowledge; Step 2 emphasizes understanding and applying new content; Step 3 provides practice and problem solving; and Step 4 includes a check for understanding. "Progress Monitoring Assessments" and problem sets show an increase in complexity. For example, in Topic 8, the Performance Task includes items at different DOK levels, such as DOK2 for Questions 1–3 and DOK 3 for Questions 4–5, as documented in the Assessment Resource scoring guide.

4.2 Coherence of Key Concepts

GUIDANCE	SCORE SUMMARY	RAW SCORE
4.2a	All criteria for guidance met.	1/1
4.2b	All criteria for guidance met.	3/3
4.2c	All criteria for guidance met.	4/4
—		TOTAL 8/8

4.2a – Materials demonstrate coherence across units by explicitly connecting patterns, big ideas, and relationships between mathematical concepts.

EnVision+ Texas Algebra II helps students make meaningful connections between mathematical concepts by weaving patterns, big ideas, and relationships across different units. For example, in Topic 3, the "Math Background" section outlines how systems of equations and inequalities relate to concepts students have already learned and what they will encounter later. It highlights key skills like interpreting graphs and understanding function behavior. In Lesson 2-6 on the Quadratic Formula, the materials revisit earlier learning, such as solving for variables, and build on it to introduce the new concept. The lesson overview also ties together state standards and college readiness expectations, showing how each piece fits into the bigger picture of students' math learning journey.

4.2b – Materials demonstrate coherence across units by connecting the content and language learned in previous courses/grade levels and what will be learned in future courses/grade levels to the content to be learned in the current course/grade level.

EnVision+ Texas Algebra II materials demonstrate coherence across units by connecting the content learned in previous courses to current grade-level content. For example, in Topic 1 of the *Teacher's Edition*, the "Math Background Coherence" section shows how concepts from Algebra I, such as solving equations with variables, transformations of absolute value functions, and piecewise-defined functions, are connected to the study of functions in Algebra II. Additionally, the Topic 3 "Looking Back" section identifies how content previously addressed is revisited and expanded in later units.

EnVision+ Texas Algebra II materials connect language learned in previous courses to the language used in current instruction. Topic 3 includes a Linguistic Accommodations section that presents vocabulary in context and offers a list of topic vocabulary with support tied to earlier and upcoming terms. *EnVision+ Texas Algebra II* materials demonstrate coherence by linking the current course content to future learning. For example, the "Math Background Coherence" section in Topic 6 describes how content on Rational Exponents and Radical Functions connects to future coursework in Calculus. It identifies how the foundational understanding developed in Algebra II prepares students for concepts such as integration and differentiation in later courses.

4.2c – Materials demonstrate coherence at the lesson level by connecting students' prior knowledge of concepts and procedures from the current and prior grade level(s) to new mathematical knowledge and skills.

EnVision+ Texas Algebra II demonstrates coherence at the lesson level by connecting concepts from the current grade level to new mathematical knowledge and skills. Topic 2's "Math Background Coherence Looking Back" section references Topic 1 and connects its concepts to the current topic, while also previewing connections to Topic 6.

EnVision+ Texas Algebra II connects procedures from the current grade level to new mathematical knowledge and skills. In Lesson 6-5, students apply the transformation rules they have learned to graph radical functions, extending their understanding of previously learned procedures to new function types.

EnVision+ Texas Algebra II connects concepts from prior grade levels to new mathematical knowledge and skills. Topic 2's "Math Background Coherence Looking Back" section incorporates content from Algebra I, linking it to current Algebra II topics and preparing students for future content in Precalculus.

EnVision+ Texas Algebra II connects procedures from prior grade levels to new mathematical knowledge and skills. In Lesson 6-3, students apply prior knowledge of intercepts, domain, and range—skills introduced in Algebra I—to the square root function, reinforcing procedural fluency while introducing new content.

4.3 Coherence and Variety of Practice

GUIDANCE	SCORE SUMMARY	RAW SCORE
4.3a	All criteria for guidance met.	4/4
4.3b	All criteria for guidance met.	4/4
—		TOTAL 8/8

4.3a – Materials provide spaced retrieval opportunities with previously learned skills and concepts across lessons and units.

EnVision+ Texas Algebra II provides spaced retrieval opportunities with previously learned skills across lessons. For example, the "Skills Review and Practice" section in the Lesson Overview includes tasks that prompt students to apply prior knowledge, such as connecting solving inequalities to absolute value inequalities. Additionally, Topic 2-1 includes prerequisite activities that teachers may choose to use to review or activate prior knowledge needed for the lesson.

EnVision+ Texas Algebra II includes spaced retrieval opportunities with previously learned skills across units. The Topic 3 Readiness Assessment is used to diagnose students' proficiency with prerequisite concepts and skills from prior units. These results can be used to generate personalized study plans aligned with the upcoming topic.

EnVision+ Texas Algebra II provides spaced retrieval opportunities with previously learned concepts across lessons. For example, in Topic 2, Step 1, the "Explore & Share" activity activates and connects students' prior knowledge to the current lesson concepts. Student responses can be used to guide class discussions before moving on to Step 2, Understand & Apply, which supports new content.

EnVision+ Texas Algebra II embeds spaced retrieval opportunities with previously learned concepts across units. In Lesson 8-2, Step 2, Understand & Apply includes warm-ups, collaborative work, and independent practice tasks that revisit concepts such as the properties of exponents and the change-of-base formula within new lessons on exponential and logarithmic functions.

4.3b – Materials provide interleaved practice opportunities with previously learned skills and concepts across lessons and units.

EnVision+ Texas Algebra II provides interleaved practice opportunities with previously learned skills across lessons. For example, in Lesson 1-2, Step 3 of the "Practice and Problem Solving" section offers independent practice on transformations using various parent functions. Additionally, Lesson 8-2, Step 3 includes independent practice of the properties of logarithms, incorporating previously learned skills into current instruction.

EnVision+ Texas Algebra II provides interleaved practice opportunities with previously learned skills across units. For example, the Topic 8 Assessment covers multiple TEKS addressed in previous units, allowing students to apply skills from earlier in the course during later assessments.

EnVision+ Texas Algebra II includes interleaved practice opportunities with previously learned concepts across lessons. For instance, Lesson 6-4 "Practice and Problem Solving" addresses TEKS 2A.2A and TEKS 2A.6A, showing how current practice connects to previously introduced concepts.

EnVision+ Texas Algebra II includes interleaved practice opportunities with previously learned concepts across units. For example, the Topic 8 Assessment integrates concepts taught in earlier units, as shown by the coverage of multiple TEKS from previous instruction.

5. Balance of Conceptual and Procedural Understanding

Materials are designed to balance conceptual understanding, procedural skills, and fluency.

5.1 Development of Conceptual Understanding

GUIDANCE	SCORE SUMMARY	RAW SCORE
5.1a	All criteria for guidance met.	3/3
5.1b	All criteria for guidance met.	1/1
5.1c	All criteria for guidance met.	1/1
—		TOTAL 5/5

5.1a – Questions and tasks require students to interpret, analyze, and evaluate models and representations for mathematical concepts and situations.

EnVision+ Texas Algebra II includes tasks that require students to interpret models and representations for mathematical concepts and situations. In Topic 8, "Math Modeling in 3 Acts," students translate the color of a test strip into a pH reading, and then convert that into hydrogen ion concentration to compare acidity levels across two juices. In Lesson 2-7, Step 3, Practice and Problem Solving 16, students interpret data from a table to solve a real-world quadratic equation and answer guiding questions such as, "What trend did you notice about the Sun's distance from the Earth as the day progresses from sunrise to sunset?" *EnVision+ Texas Algebra II* requires students to analyze and evaluate models. In Topic 6, "Math Modeling in 3 Acts," students assess different routes to determine the quickest way to a destination. In Lesson 2-7, Step 2, students analyze how regression data can be used to calculate the minimum and maximum y-values. Additionally, in Step 2, "Try It 2" activity, students evaluate data from a table to build a quadratic model, justifying their reasoning and evaluating the appropriateness of their constructed representation.

5.1b – Questions and tasks require students to create models to represent mathematical situations.

EnVision+ Texas Algebra II provides students with opportunities to create models that represent mathematical situations through real-world, project-based tasks. In Topic 3, Pick a Project 3-D, students are tasked with designing a stained-glass window using diagonal lines to apply geometric and algebraic reasoning. Similarly, in Topic 6, Pick a Project 6-D, students are asked to construct a three-dimensional model to represent a function and its inverse. *EnVision+ Texas Algebra II* includes lesson-based activities that require students to build mathematical models. In Lesson 7-2, Step 2, students use exponential data to create a population model and answer questions like, "What steps should you take when using the regression data to write the function?" In Topic 6, "Math Modeling in 3 Acts," students apply radical expressions to solve a real-world problem involving time and distance. The teacher is guided to prompt students with the question, "How can they model mathematically the time it takes each friend to reach the snack shack?"

5.1c – Questions and tasks provide opportunities for students to apply conceptual understanding to new problem situations and contexts.

EnVision+ Texas Algebra II provides opportunities for students to apply their conceptual understanding in new contexts. For example, in Topic 6-1, "Extend Student Thinking" task, students are challenged to evaluate more complex expressions involving rational exponents, reinforcing their grasp across different exponent rules. Topic 6-4 similarly extends understanding of periodic functions by requiring students to write equations that map functions back to themselves, applying conceptual knowledge in new transformation scenarios. *EnVision+ Texas Algebra II* includes embedded lesson features that prompt students to apply what they have learned to real-world problems. In Lesson 8-6, Step 2, Example 3, students extend their understanding of exponential equations by integrating logarithms to solve them. Teachers are instructed to ask guiding questions. In Lesson 5-5, Step 2, Example 2, students solve a work-rate problem involving rational equations, with prompts like, "Why do you add the expressions that represent the two work-rates?" and "Why is it important to define the variable before writing the equation?"

5.2 Development of Fluency

GUIDANCE	SCORE SUMMARY	RAW SCORE
5.2a	All criteria for guidance met.	2/2
5.2b	All criteria for guidance met.	3/3
5.2c	All criteria for guidance met.	3/3
5.2d	All criteria for guidance met.	1/1
—		TOTAL 9/9

5.2a – Materials provide tasks that are designed to build student automaticity and fluency necessary to complete grade-level tasks.

EnVision+ Texas Algebra II materials include tasks designed to build student automaticity and fluency needed for grade-level mastery. Lesson 1-4, Step 3, Practice and Problem Solving offers adaptive practice targeting students' specific weaknesses through high-volume repetition to drive automaticity. Spiral review practice maintains fluency across skills by revisiting previously learned concepts in spaced intervals to reinforce procedural efficiency.

EnVision+ Texas Algebra II includes Lesson 5-4, Adding and Subtracting Rational Expressions Warm Up, which engages students in adding fractions with unlike denominators to build fluency for adding rational expressions. Lesson 5-4, Step 2, Understand & Apply, Example 2, builds automaticity by connecting finding the Least Common Multiple (LCM) of fractions to finding the LCM of rational expressions, with conceptual prompts such as, "How can you find the LCM of two rational expressions if the polynomials cannot be factored?"

5.2b – Materials provide opportunities for students to practice the application of efficient, flexible, and accurate mathematical procedures within the lesson and/or throughout a unit.

EnVision+ Texas Algebra II materials provide opportunities for students to practice flexible mathematical procedures within lessons and units. Topic 1-5, Example 1, Part C prompts students to consider why it is better to subtract before dividing, encouraging evaluation of optimal and efficient solution methods. Topic 1, Math Modeling in 3 Acts, Act 3 asks students to analyze the efficiency of their chosen approach, consider alternate methods, and evaluate how changes in problem conditions affect solutions.

EnVision+ Texas Algebra II includes Lesson 3-1 Linear Systems, Step 2, Understand & Apply, Example 1, which allows students to solve systems of equations using elimination, substitution, or graphing, supporting flexibility. Example 3 in the same lesson provides efficient methods for solving systems with three variables and prompts students to discuss the goals of substitution and elimination. Practice and Problem Solving, Problem 10 guides students to identify and correct errors in solving systems, promoting accuracy.

5.2c – Materials provide opportunities for students to evaluate procedures, processes, and solutions for efficiency, flexibility, and accuracy within the lesson and throughout a unit.

EnVision+ Texas Algebra II materials provide opportunities for students to evaluate procedures, processes, and solutions for efficiency, flexibility, and accuracy. Topic 2, Math Modeling in 3 Acts, Act 3 prompts students to analyze and evaluate solution efficiency, while Topic 1, Math Modeling in 3 Acts. Act 2 encourages flexible thinking by comparing multiple solution methods for systems of equations. Topic 4, Math Modeling in 3 Acts, Act 3 provides benchmark solutions for accuracy comparison, supporting reflective problem solving.

EnVision+ Texas Algebra II includes Lesson 5-5 Solving Rational Equations Warm Up, which requires students to critique two methods for solving an equation with fractions and describe advantages and disadvantages of each approach. Lesson 8-2 Properties of Logarithms, Step 2 Understand & Apply, Example 6 guides students to use change-of-base methods to solve logarithmic equations and explains conceptual reasoning behind multiple solution strategies to ensure procedural efficiency and accuracy.

5.2d – Materials contain embedded supports for teachers to guide students toward increasingly efficient approaches.

EnVision+ Texas Algebra II materials contain embedded supports to guide students toward increasingly efficient approaches. Topic 5, Math Modeling in 3 Acts, Act 2 identifies unnecessary extra steps in student solutions and guides teachers to prompt students toward more streamlined methods. Topic 1, Math Modeling in 3 Acts, Act 2 suggests teachers wait to reveal answers to encourage student discourse and then guide students to identify the most efficient solution collaboratively.

EnVision+ Texas Algebra II includes Lesson 1-4 Transformations of Absolute Value Functions, Step 2, Understand & Apply, Example 6, which supports efficient graphing by applying transformations without plotting points. Lesson 6-5, Graphing Radical Functions, Step 2, Understand & Apply, Example 3 prompts students to describe effects of coefficients on radical function graphs, promoting efficient procedural approaches and deeper conceptual understanding.

5.3 Balance of Conceptual Understanding and Procedural Fluency

GUIDANCE	SCORE SUMMARY	RAW SCORE
5.3a	All criteria for guidance met.	2/2
5.3b	All criteria for guidance met.	3/3
5.3c	All criteria for guidance met.	6/6
—		TOTAL 11/11

5.3a – Materials explicitly state how the conceptual and procedural emphasis of the TEKS are addressed.

EnVision+ Texas Algebra II materials explicitly state how the conceptual and procedural emphasis of the TEKS are addressed. The Topic 1 Planner Essential Understanding outlines conceptual knowledge, such as identifying key features of a graph and understanding that an absolute value function graph has a vertex as its turning point. The Topic 1 Planner Mathematical Objectives lists procedural skills, including identifying key features of graphs and graphing absolute value function transformations.

EnVision+ Texas Algebra II integrates conceptual and procedural emphasis within lessons. For example, Lesson 2-2, Standard Form of a Quadratic Function, Example 4 guides students in algebraically determining a parabola's equation using three coordinate points, then confirms the equation graphically, reinforcing conceptual understanding with procedural fluency. Lesson 5-2 Graphing Rational Functions, Example 5 similarly integrates conceptual discussions of Young's Rule with procedural graphing steps and includes prompts like, "Why does the intersection at $a=11.1$ mean that situation is $a \geq 11.1$?" to deepen understanding.

5.3b – Questions and tasks include the use of concrete models and manipulatives, pictorial representations (figures/drawings), and abstract representations, as required by the TEKS.

EnVision+ Texas Algebra II materials include questions and tasks that utilize concrete models, pictorial representations, and abstract representations as required by the TEKS. For example, Lesson 6-4, The Cube Root Function, Example 3 uses physical cubes (concrete), graphs of cube root functions (pictorial), and equations (abstract) to support understanding. Prompts such as, "How is transforming the cube root function different from transforming the square root function?" guide students to connect representations meaningfully.

EnVision+ Texas Algebra II includes Lesson 4-4, Dividing Polynomials Instructional Focus Warm Up, where students use algebra tiles (concrete) to divide polynomials, visualize the process through diagrams (pictorial), and express the solution algebraically (abstract). Teacher prompts such as, "If the remainder in a division is zero, what can you say about the dividend?" support students in articulating conceptual connections across representations.

5.3c – Materials include supports for students in connecting, creating, defining, and explaining concrete and representational models to abstract (symbolic/numeric/algorithmic) concepts, as required by the TEKS.

enVision+ Texas Algebra II materials include supports for students to connect, create, define, and explain concrete and representational models to abstract (symbolic/numeric/algorithmic) concepts. For example, Topic 2, Project 2C engages students in creating concrete models with cardboard and discs, then connecting these to abstract quadratic models. Extension tasks require defining and explaining how observations from physical objects relate to quadratic equations.

EnVision+ Texas Algebra II includes Lesson 1-2, Transformations of Functions, Example 2, where students connect mirror reflections (concrete) to graph reflections (representational) and abstract equations. Teacher prompts such as, "How can you describe what the reflection across the x-axis does to the coordinates and the equation?" guide students in defining and explaining how models translate into symbolic representations. Example 6 builds on this by having students create equations from graphs, integrating representational models with abstract concepts to solidify conceptual understanding.

5.4 Development of Academic Mathematical Language

GUIDANCE	SCORE SUMMARY	RAW SCORE
5.4a	All criteria for guidance met.	3/3
5.4b	All criteria for guidance met.	1/1
5.4c	All criteria for guidance met.	6/6
—		TOTAL 10/10

5.4a – Materials provide opportunities for students to develop academic mathematical language using visuals, manipulatives, and other language development strategies.

EnVision+ Texas Algebra II provides robust opportunities for students to develop academic mathematical language through the use of visuals, manipulatives, and multiple language development strategies. For example, in Topic 2, "Pick a Project," Projects 2B and 2C engage students with graphing tools to create visual representations such as graphs, while Project 2C incorporates physical manipulatives—specifically cardboard and one-inch-diameter discs—to model the motion involved in making a pizza. Additionally, Project 2A includes a video recording prompt that encourages students to describe their project's visual models aloud, promoting the use of precise mathematical language in spoken form.

EnVision+ Texas Algebra II further supports language development through structured routines and prompts that foster academic discourse. In Lesson 2-9, for instance, students explore the focus and directrix of parabolas using visual aids and targeted questioning to define mathematical elements like vertex and orientation. Additionally, the lesson incorporates a "Language Routine: Discussion Supports" section that promotes peer discourse through Think-Pair-Share activities. Example 4 of this lesson leverages real-world manipulatives such as dishes and balls to model a parabolic shape, aligning with targeted ELPS support. This thoughtful integration of tools and routines enables all students, including emergent bilinguals, to practice and refine mathematical vocabulary in meaningful contexts.

5.4b – Materials include embedded teacher guidance to scaffold and support students' development and use of academic mathematical vocabulary in context.

EnVision+ Texas Algebra II embeds explicit teacher guidance throughout the materials to scaffold and support the development and application of academic mathematical vocabulary. For example, in Topic 2, "Linguistic Accommodations" section, vocabulary support is provided through "Math Meaning" and "Other Meaning(s)" for selected terms, helping students distinguish between everyday and mathematical usage. This dual-definition format aids in bridging conceptual understanding for all learners, particularly emergent bilingual students.

EnVision+ Texas Algebra II includes targeted teacher prompts to extend mathematical vocabulary in context. In Lesson 2-1, the teacher is guided to deepen students' understanding of domain, range, vertex, and axis of symmetry through carefully sequenced questioning. Prompts such as, "How do a , h , and k

affect the domain and range of a quadratic function in vertex form?" model how to link vocabulary to function transformations. These embedded supports ensure consistent vocabulary use and reinforce the precision required in mathematical communication.

5.4c – Materials include embedded teacher guidance to support the application of appropriate mathematical language to include vocabulary, syntax, and discourse to include guidance to support mathematical conversations that provide opportunities for students to hear, refine, and use math language with peers and develop their math language toolkit over time as well as guide teachers to support student responses using exemplar responses to questions and tasks.

EnVision+ Texas Algebra II includes comprehensive teacher guidance to support the development of vocabulary, syntax, and discourse in mathematical conversations. The Topic 2 "Linguistic Accommodations" section offers multiple supports: "Vocabulary Support" provides both mathematical and everyday meanings of terms; "Academic Vocabulary" identifies terms for oral and written use; and "Oral/Written Discourse" strategies align to specific ELPS. These sections help teachers foster environments where students actively listen to, refine, and produce mathematical language over time.

EnVision+ Texas Algebra II additionally embeds opportunities for peer interaction through discourse routines. For example, in Lesson 1-2, the Targeted ELPS Support (Speaking 2F) facilitates a gallery walk where students discuss and match coordinate pair reflections. Teachers are provided with structured questions such as, "How can you describe what the reflection across the x-axis does to the coordinates and the equation?" to prompt student-to-student discourse. The materials also offer exemplar responses to guide teacher facilitation and student articulation of complex mathematical ideas.

5.5 Process Standards Connection

GUIDANCE	SCORE SUMMARY	RAW SCORE
5.5a	All criteria for guidance met.	1/1
5.5b	All criteria for guidance met.	2/2
5.5c	All criteria for guidance met.	2/2
5.5d	All criteria for guidance met.	1/1
—		TOTAL 6/6

5.5a – TEKS process standards are integrated appropriately into the materials.

EnVision+ Texas Algebra II demonstrates strong integration of the TEKS process standards across lessons. The "Teacher Edition" front matter outlines how these standards are embedded in instruction through the marriage of content and mathematical processes. For instance, in Lesson 5-1, "Inverse Variation and the Reciprocal Function," Example 3 links directly to the TEKS 2A.GL by asking students to formulate and solve equations using inverse variation models. Guiding questions such as, "What information about the inverse variation model is given that will be used to set up an equation?" demonstrate how the materials connect mathematical reasoning to problem-solving contexts.

EnVision+ Texas Algebra II continues this alignment in practice tasks. Lesson 5-1, Step 3 includes a real-world modeling activity where students determine mileage based on remaining gas—a clear connection to the TEKS 2A.GL. This problem reinforces how inverse variation applies to daily scenarios and encourages students to justify their solutions, showing a deep integration of process standards in both guided and independent work.

5.5b – Materials include a description of how TEKS process standards are incorporated and connected throughout the course.

EnVision+ Texas Algebra II provides a thorough description of how the TEKS process standards are incorporated across the course. The *Teacher's Edition* front matter outlines the integration of these standards through core instructional components and explains how they are "infused and explicitly highlighted in lesson instruction." These standards are further reinforced in structured exercises such as, "Do You Understand?" and "Do You Know How?," ensuring students apply the standards consistently throughout the course.

EnVision+ Texas Algebra II includes specific mappings of process standards in lesson overviews and performance assessments. For example, in Lesson 2-8 on Quadratic Inequalities, the overview connects to the TEKS 2A.4H and explains how students will apply a problem-solving model to write and solve quadratic inequalities. Embedded teacher prompts guide students to explain their reasoning and justify their methods, making the process standards transparent and actionable throughout the curriculum.

5.5c – Materials include a description for each unit of how TEKS process standards are incorporated and connected throughout the unit.

EnVision+ Texas Algebra II provides a clear and consistent description for each unit of how the TEKS process standards are incorporated and connected throughout the unit. Each topic includes a "Mathematical Process Standards" section that outlines specific TEKS connections, identifies student behaviors, and suggests embedded questioning strategies that promote mathematical reasoning. For example, in Topic 1, the process standards 2A.1F (analyzing mathematical relationships) and 2A.1G (justifying solutions) are explicitly tied to work with absolute value functions, equations, and inequalities. This intentional focus guides teachers in emphasizing particular processes across the unit's lessons and activities.

EnVision+ Texas Algebra II, in Lesson 8-6 titled Exponential and Logarithmic Equations, the Topic Overview describes how students will connect mathematical ideas by solving equations and justifying their methods in real-world contexts. Instructional activities such as Step 1, "Explore & Share" prompt students to write and compare exponential models. This lesson supports the TEKS 2A.5D and is reinforced with teacher guidance using prompts like, "Why do you think an exponential model is better than a linear model?" and "How do you know that the sales data is modeled by an exponential function?" These examples demonstrate how process standards are developed and applied coherently across the unit.

5.5d – Materials include an overview of the TEKS process standards incorporated into each lesson.

EnVision+ Texas Algebra II provides a lesson-level overview of how the TEKS process standards are incorporated, ensuring coherence and visibility of expectations. At the beginning of each lesson, a TEKS section highlights relevant content and process standards and describes how students will demonstrate mathematical understanding. For instance, Lesson 1-1 identifies how students will apply mathematical processes to acquire and express understanding through modeling and justification, with suggested instructional strategies to support this objective.

EnVision+ Texas Algebra II, in Lesson 4-6, Theorems About Roots of Polynomial Equations, the overview explains that students will identify and justify valid roots in real-world polynomial problems. During Step 2: Understand & Apply, students use the Rational Root Theorem to construct, solve, and interpret polynomial models. Embedded prompts such as, "How can you test a possible rational root to determine if it is a root of a polynomial function?" and "How do you know from the context that you do not need to test for negative roots?" guide students toward reasoning and justification aligned with the TEKS process standards. This structured support ensures that students are routinely engaging in practices such as making conjectures, analyzing representations, and justifying mathematical thinking across lessons.

6. Productive Struggle

Materials support students in applying disciplinary practices to productive problem-solving, including explaining and revising their thinking.

6.1 Student Self-Efficacy

GUIDANCE	SCORE SUMMARY	RAW SCORE
6.1a	All criteria for guidance met.	3/3
6.1b	All criteria for guidance met.	6/6
6.1c	All criteria for guidance met.	3/3
—		TOTAL 12/12

6.1a – Materials provide opportunities for students to think mathematically, persevere through solving problems, and to make sense of mathematics.

EnVision+ Texas Algebra II materials provide opportunities for students to think mathematically and make sense of math through embedded journaling and exploration. In Lesson 1-6, Step 1, "Explore & Share," students analyze graphs to identify patterns and relationships. The "Student Companion Journal" supports structured thinking and documentation of strategies, while teacher prompts such as, "What do you think bivariate data means in relation to the graph shown?" and "How could you find an equation that would fit the data?" encourage mathematical reasoning and sense-making.

EnVision+ Texas Algebra II supports perseverance by prompting students to reflect on errors and revise strategies. For example, in Topic 2, the "Build G.R.I.T." section within the Topic Opener introduces "Grow Confidence" and "Resilience," encouraging students to approach challenges with a growth mindset. Prompts guide students to consider peer feedback, helping them persist through difficult problems.

EnVision+ Texas Algebra II supports mathematical sense-making through visual and real-world contexts. In Lesson 1-6, Step 2, "Understand & Apply," Example 3 and the Concept Summary use linear regression and scatterplots to help students understand correlations. Prompts like, "How can linear regression help you to model real-world data?" facilitate deeper analysis and connections between mathematical models and real-world interpretations.

6.1b – Materials support students in understanding, explaining, and justifying that there can be multiple ways to represent and solve problems and complete tasks.

EnVision+ Texas Algebra II supports student understanding by embedding tasks that demonstrate multiple solution paths. For example, in Topic 2, "Act 2 Modeling with Math," students use video data to model relationships, write functions, and explore various representations to solve a complex problem. This encourages flexibility in mathematical thinking.

EnVision+ Texas Algebra II also provides opportunities for justification and reflection. In Topic 2, "Math Modeling in 3 Acts," students engage in post-problem analysis (Act 3) where they evaluate the efficiency of their chosen strategy. This supports metacognition and encourages students to consider alternative methods.

EnVision+ Texas Algebra II reinforces these goals in Lesson 3-3, where Step 2, "Understand & Apply," includes Think-Pair-Share prompts. Students discuss solving systems involving linear and quadratic equations with guiding questions like, "Why would you use graphing when solving a linear-quadratic system of equations?" helping them compare and justify strategies. The accompanying Practice and Problem-Solving section includes Error Analysis tasks where students identify and explain mistakes, promoting conceptual understanding.

6.1c – Materials are designed to require students to make sense of mathematics through multiple opportunities for students to do, write about, and discuss math with peers and teachers.

EnVision+ Texas Algebra II materials are structured to engage students in doing, writing, and discussing mathematics. Lesson 1-1, "Explore & Share," includes collaborative small-group problem solving and teacher-guided discourse using embedded prompts to "Facilitate Meaningful Mathematical Discourse."

EnVision+ Texas Algebra II emphasizes writing in mathematics through Sample Responses and Process Standards prompts. In Lesson 2-2, students construct arguments in writing to support or refute mathematical claims. These prompts scaffold written communication and help clarify student thinking.

EnVision+ Texas Algebra II continues this approach in Lesson 6-6 through a Language Routine on radical equations and inequalities. Students work through real-world problems, express their reasoning verbally, and respond to prompts such as, "How are the steps for solving a radical inequality different from solving a radical equation?" which deepens both conceptual understanding and communication skills.

6.2 Facilitating Productive Struggle

GUIDANCE	SCORE SUMMARY	RAW SCORE
6.2a	All criteria for guidance met.	6/6
6.2b	All criteria for guidance met.	4/4
—		TOTAL 10/10

6.2a – Materials support teachers in guiding students to share and reflect on their problem-solving approaches, including explanations, arguments, and justifications.

EnVision+ Texas Algebra II supports teachers in guiding students to reflect on their mathematical thinking. In Lesson 2-2, the "Three Reads" Language Routine and ELPS prompts facilitate peer discussion and encourage students to revise explanations, fostering critical reflection on reasoning.

EnVision+ Texas Algebra II uses structured routines to promote justification. In Lesson 5-3, the Collect and Display routine encourages students to share answers and explain their processes using prompts like, "Is it possible to have more than one correct answer?" This allows teachers to guide discussion toward clearer, more precise reasoning.

EnVision+ Texas Algebra II further supports this in Lesson 5-3, Example 3, where teacher prompts ask students to justify why rational expressions are closed under multiplication. This promotes conceptual understanding and encourages students to reflect on the reasoning behind procedural steps.

6.2b – Materials include prompts and guidance to support teachers in providing explanatory feedback based on student responses and anticipated misconceptions.

EnVision+ Texas Algebra II includes Common Error and Error Analysis features that help teachers address anticipated misconceptions. For instance, in Lesson 1-1, "Do You Understand?" prompts highlight frequent mistakes and guide students through correcting them.

EnVision+ Texas Algebra II provides sample responses and guidance to help teachers deliver precise feedback. Lesson 1-1 includes benchmarked responses to aid in evaluating student work, supporting consistent and explanatory feedback.

EnVision+ Texas Algebra II reinforces this support in Lesson 5-5 and Lesson 8-2. In Lesson 5-5, teacher notes clarify that students may incorrectly use a solution to an equation rather than solving the problem posed in the context. Teachers are prompted to guide students in reinterpreting the problem. Similarly, Lesson 8-2 addresses misuse of exponent rules and emphasizes that logarithms are the appropriate inverse tool for solving such equations. Prompts such as, "Why can you solve the equation using both base 10 and natural logarithms?," extend student thinking and support teacher feedback.