

Savvas Learning Company LLC

English Mathematics, Algebra I

ENVISION+ TEXAS AGA 2027 (PRINT AND DIGITAL), ALGEBRA I

MATERIAL TYPE	ISBN	FORMAT	ADAPTIVE/STATIC
Full-Subject, Tier-1	9798213463446	Both Print and Digital	Static

Rating Overview

TEKS SCORE	ELPS SCORE	ERROR CORRECTIONS (IMRA Reviewers)	SUITABILITY NONCOMPLIANCE	SUITABILITY EXCELLENCE	PUBLIC FEEDBACK (COUNT)
100%	100%	20	Flags Addressed	Flags in Report	0

Quality Rubric Section

RUBRIC SECTION	RAW SCORE	PERCENTAGE
1. Intentional Instructional Design	28 out of 28	100%
2. Progress Monitoring	26 out of 26	100%
3. Supports for All Learners	27 out of 27	100%
4. Depth and Coherence of Key Concepts	19 out of 19	100%
5. Balance of Conceptual and Procedural Understanding	41 out of 41	100%
6. Productive Struggle	22 out of 22	100%

Breakdown by Suitability Noncompliance and Excellence Categories

SUITABILITY NONCOMPLIANCE FLAGS BY CATEGORY	IMRA REVIEWERS	PUBLIC	Flags NOT Addressed by November Vote
1. Prohibition on Common Core	0	0	0
2. Alignment with Public Education's Constitutional Goal	0	0	0
3. Parental Rights and Responsibilities	1	0	0
4. Prohibition on Forced Political Activity	0	0	0
5. Protecting Children's Innocence	0	0	0
6. Promoting Sexual Risk Avoidance	0	0	0
7. Compliance with the Children's Internet Protection Act (CIPA)	0	0	0

SUITABILITY EXCELLENCE FLAGS BY CATEGORY	IMRA REVIEWERS
Category 2: Alignment with Public Education's Constitutional Goal	34
Category 6: Promoting Sexual Risk Avoidance	0

IMRA Quality Report

1. Intentional Instructional Design

Materials support educators in effective implementation through intentional course and lesson-level design.

1.1 Course-Level Design

GUIDANCE	SCORE SUMMARY	RAW SCORE
1.1a	All criteria for guidance met.	4/4
1.1b	All criteria for guidance met.	2/2
1.1c	All criteria for guidance met.	2/2
1.1d	All criteria for guidance met.	2/2
1.1e	All criteria for guidance met.	2/2
—		TOTAL 12/12

1.1a – Materials include a scope and sequence outlining the TEKS, ELPS, and concepts taught in the course.

EnVision+ Texas, Algebra I "Scope and Sequence" includes multiple versions tailored for different instructional calendars (165, 180, and 210 days) and is located in the front matter of the *Teacher's Edition* and Texas Reviewer Materials folder. Additionally, the materials contain a calendar detailing lessons and correspond to the Texas Essential Knowledge and Skills (TEKS), showing strong alignment among the TEKS, English Language Proficiency Standards (ELPS), and key Algebra I concepts. The sequence includes lesson numbers, objectives, materials, pacing, and standards alignment, supporting flexible and structured planning.

EnVision+ Texas, Algebra I TEKS and ELPS are presented at the start of each lesson and are also documented in the TEKS Breakout Citations and ELPS Breakout Citations with specific locations within the *Teacher's Edition*.

1.1b – Materials include suggested pacing (pacing guide/calendar) to support effective implementation for various instructional calendars (e.g., varying numbers of instructional days – 165, 180, 210).

EnVision+ Texas, Algebra I materials include detailed "Scope and Sequence" documents that contain pacing guides. Each pacing guide outlines the number of days recommended for teaching specific TEKS.

EnVision+ Texas, Algebra I program offers flexible pacing options, specifically for 165-, 180-, and 210-day instructional calendars, to accommodate various school schedules. These guides are located in the Texas Reviewer Materials and clearly list each topic alongside its suggested duration and TEKS alignment. Additionally, versions are available for both 45–50-minute daily classes and 90-minute block schedules.

1.1c – Materials include an explanation for the rationale of unit order as well as how concepts to be learned connect throughout the course.

EnVision+ Texas, Algebra I materials clearly articulate the intentional design and sequence of each unit. Each unit begins with a math background section that outlines key concepts and reinforces coherence by linking prior learning to current and future lessons.

The rationale for lesson and unit order is explicitly stated in resources such as the *Teacher's Edition*, TEKS Guide, and Navigation Guide.

Visuals and pacing guides reinforce the progression of learning. For example, Topics 1–4 are grouped around linear relationships, while Topics 6–8 focus on polynomials and quadratic functions, showing intentional thematic development.

1.1d – Materials include protocols with corresponding guidance for unit and lesson internalization.

EnVision+ Texas, Algebra I materials provide structured protocols to support both unit and lesson internalization for teachers and instructional coaches. These internalization tools are housed in resources such as the Navigation Guide and the Texas Reviewer Materials.

Unit internalization protocols include guidance on reviewing the "Scope and Sequence," preparing to teach each topic, assessing understanding, and gathering necessary materials.

Lesson internalization protocols offer detailed notes on lesson goals, pacing, transitions, and preparation, making planning and implementation more efficient.

EnVision+ Texas, Algebra I features a "Math Background" section that explains key concepts and includes a coherence component to connect topics across mathematical domains and grade levels. Internalization protocols consider the diverse needs of learners, including embedded linguistic accommodations for emergent bilingual students at different proficiency levels (Beginning, Intermediate, Advanced, and Advanced High).

1.1e – Materials include resources and guidance for instructional leaders to support teachers with implementing the materials as designed.

EnVision+ Texas Algebra I materials include structured lesson guidance and resources designed to ensure consistent implementation. Each lesson follows a four-part instructional sequence: "Explore," "Understand and Apply," "Practice and Problem Solving," and "Assess and Differentiate."

EnVision+ Texas Algebra I provides specific protocols for instructional leaders and coaches to support teacher planning and delivery. These include topic and lesson internalization guides found in the

Navigation Guide, Teacher's Edition, and Texas Reviewer Materials. These protocols outline instructional goals, pacing, preparation steps, and materials needed for each lesson and topic.

Additional resources for instructional leaders include implementation guides and observation tools. The "Instructional Leader Support" section outlines guidance for supporting teachers with lesson planning, instructional execution, and content alignment.

1.2 Unit-Level Design

GUIDANCE	SCORE SUMMARY	RAW SCORE
1.2a	All criteria for guidance met.	2/2
1.2b	All criteria for guidance met.	2/2
—		TOTAL 4/4

1.2a – Materials include comprehensive unit overviews that provide the background content knowledge and academic vocabulary necessary to effectively teach the concepts in the unit.

EnVision+ Texas, Algebra I materials include supports for conceptual understanding, procedural skill development, and real-world application within each lesson. Each topic is introduced with a comprehensive unit overview that provides the necessary background content knowledge and outlines the academic vocabulary relevant to the unit.

Vocabulary support is embedded within the *Teacher's Edition* under the "Linguistic Accommodations" section found at the start of every topic. This section includes three categories: upcoming vocabulary, vocabulary in context, and context-setting vocabulary.

1.2b – Materials contain supports for families in both Spanish and English for each unit with suggestions on supporting the progress of their student.

EnVision+ Texas, Algebra I includes comprehensive family engagement resources in both English and Spanish to support student learning at home. Each unit provides an overview of resources for families, which include concept summaries, examples, video tutorials, practice opportunities, and assessment tools.

EnVision+ Texas, Algebra I family resources are accessible through a dedicated platform and contain a section titled "How Can You Help With Homework," which offers vocabulary and lesson reviews to guide family interactions. The materials also feature a toggle option allowing families to access content in either English or Spanish.

EnVision+ Texas, Algebra I includes metalinguistic transfer supports to assist families and students in understanding the relationship between English and Spanish vocabulary. These resources identify transferable and non-transferable skills and incorporate ELPS by lesson. Family activities are designed to reinforce classroom learning—for example, tasks involving real-world applications such as currency conversions—while also prompting academic discussions at home (e.g., "How do you solve a two-step linear equation?").

1.3 Lesson-Level Design

GUIDANCE	SCORE SUMMARY	RAW SCORE
1.3a	All criteria for guidance met.	8/8
1.3b	All criteria for guidance met.	3/3
1.3c	All criteria for guidance met.	1/1
—		TOTAL 12/12

1.3a – Materials include comprehensive, structured, detailed lesson plans that include daily objectives, questions, tasks, materials, and instructional assessments required to meet the content and language standards of the lesson (aligned with the TEKS and the ELPS).

EnVision+ Texas, Algebra I materials provide comprehensive, structured, and detailed lesson plans that align with both the TEKS and ELPS. Each lesson includes a lesson overview that outlines mathematics objectives, language objectives, vocabulary, and essential questions.

Lesson plans include clear guidance for teachers through structured sections such as Topic Opener, Explore, Understand and Apply, Practice and Problem Solving, and Assess and Differentiate. The *Teacher's Edition* provides daily instructional components, including objectives, materials needed, embedded questions, tasks, and formative assessments.

Language development is explicitly supported. Each lesson lists ELPS and includes a "Before, During, and After" section that guides instructional pacing and supports productive struggle and mathematical discourse. For example, in Lesson 1-1, the materials offer math objectives, essential understandings, coherence connections, and process standards practice; ELPS-aligned language routines, differentiated language supports for emergent bilingual students, and teacher guidance to facilitate math conversations during activities such as "Try It!" and "Talk About It."

1.3b – Materials include a lesson overview listing the teacher and student materials necessary to effectively deliver the lesson, and the suggested timing for each lesson component.

EnVision+ Texas, Algebra I materials include a lesson overview for each lesson that lists the teacher and student materials needed for instruction. These materials include manipulatives, activity pages, templates, and references to Teacher Resource Originals.

Each lesson also includes a general timeline, with the total number of instructional days noted, and organizes instruction into four key phases: Explore, Understand and Apply, Practice and Problem Solving, and Assess and Differentiate.

At the start of each lesson, the "Pick a Project" section provides multiple project options for students, with clearly listed materials, worksheets, and teacher guidance on project selection, pacing, grouping, and extensions. These projects are supported with overviews and scoring guides.

1.3c – Materials include guidance on the effective use of lesson materials for extended practice (e.g., homework, extension, enrichment).

EnVision+ Texas, Algebra I materials provide guidance on the effective use of extended practice through multiple features embedded within each lesson. Each lesson includes a "Practice and Problem Solving" section, and Extending Student Thinking prompts that are directly connected to specific worked examples, supporting deeper engagement with the content.

EnVision+ Texas, Algebra I includes a Differentiated Resource page, such as in Lesson 1-1, which provides targeted resources for reteaching, additional practice, enrichment, and expanding learning activities.

EnVision+ Texas, Algebra I further support is found in the "Assess and Differentiate" section at the end of lessons (e.g., Chapter 1.2: "Solving Linear Equations and Inequalities"), which offers structured guidance on selecting resources aligned to student performance—whether for review, additional practice, or enrichment.

EnVision+ Texas, Algebra I extended practice is supported by student engagement techniques, such as the "Talk About Math" section, which prompts peer discussion through reflective questions like, "Do you understand?" and "Do you know how?"

2. Progress Monitoring

Materials support educators in effective implementation through frequent, strategic opportunities to monitor and respond to student progress.

2.1 Instructional Assessments

GUIDANCE	SCORE SUMMARY	RAW SCORE
2.1a	All criteria for guidance met.	9/9
2.1b	All criteria for guidance met.	2/2
2.1c	All criteria for guidance met.	2/2
2.1d	All criteria for guidance met.	6/6
2.1e	All criteria for guidance met.	2/2
—		TOTAL 21/21

2.1a – Materials include a variety of instructional assessments at the unit and lesson level (including diagnostic, formative, and summative) that vary in types of tasks and questions.

EnVision+ Texas, Algebra I includes diagnostic and summative assessments at the unit level that vary in both task types (e.g., readiness checks, performance tasks) and question types (e.g., multiple choice, open-ended).

EnVision+ Texas, Algebra I provides formative assessments at the lesson level, such as "Try It," "Do You Understand?," "Exit Tickets," "Quick Checks," and "Practice and Problem Solving," which vary in both the types of tasks and the types of questions.

EnVision+ Texas, Algebra I includes summative assessments at the lesson level, including "Quick Checks" and "Additional Practice," that vary in task structure and question formats.

EnVision+ Texas, Algebra I provides multiple versions of unit-level assessments, such as "Topic Reviews," "Topic Assessments," and "Performance Tasks," offering repeated opportunities for teachers to assess student understanding using a variety of task types and question formats.

2.1b – Materials include the definition and intended purpose for the types of instructional assessments included.

EnVision+ Texas, Algebra I includes definitions for the types of instructional assessments provided in the materials. At the beginning of the *Teacher's Edition*, under the section "Navigating a Lesson in your *Teacher's Edition*," each step and part of the steps are defined. For example, Step 2k: "Exit Tickets," is defined as a tool for checking students' understanding of concepts early in the lesson. The "Assess and Differentiate" section also includes definitions of summative assessments.

EnVision+ Texas, Algebra I includes the intended purpose of instructional assessments. For example, the "Exit Ticket" in Lesson 4-3, Step 2 is intended to inform instructional decisions, and instructional implications are provided for each answer choice. The "Assess and Differentiate" section describes summative assessments as tools for evaluating learning, skill acquisition, and achievement at the end of a unit and includes examples of how they can be used for reteaching or reassessment. The materials also include examples of how to use formative assessments such as "Quick Checks," "Warm-Ups," "Think-Pair-Share" activities, and "Exit Tickets."

2.1c – Materials include teacher guidance to ensure consistent and accurate administration of instructional assessments.

EnVision+ Texas, Algebra I provides teacher guidance to support the consistent administration of assessments. The materials specify whether an assessment is a course readiness or topic readiness assessment and indicate the best times for administration. The Assessment Guide contains a "Why and When to Assess" section outlining when assessments should be given. The materials also include reminders and tips for time allotment and step-by-step guidance for administering each component of the assessment.

EnVision+ Texas, Algebra I includes guidance to support accurate administration of assessments. The Assessment Guide includes a "What to Assess" section and a "How to Assess" section, which describe procedures for each assessment type. The "Assessment Data" section contains answer keys to align teacher understanding with assessment expectations.

2.1d – Diagnostic, formative, and summative assessments are aligned to the TEKS and objectives of the course, unit, or lesson.

EnVision+ Texas, Algebra I includes diagnostic assessments that are aligned to the TEKS of the course. Topic Readiness Assessments appear at the start of each topic and are aligned to the course standards, with the TEKS listed next to assessment items or included within rubrics.

EnVision+ Texas, Algebra I includes diagnostic assessments that are aligned to the objectives of the unit or lesson. "Topic Readiness Assessments" evaluate prerequisite concepts and skills related to the upcoming unit or lesson and are used to generate personalized study plans.

EnVision+ Texas, Algebra I includes formative assessments that are aligned to the TEKS of the course. "Try It!," "Do You Understand?," "Do You Know How?," and "Exit Tickets" appear throughout lessons and are aligned to the TEKS.

EnVision+ Texas, Algebra I includes formative assessments that are aligned to the objectives of the unit or lesson. The materials indicate when to assign assessments in relation to specific lesson objectives.

EnVision+ Texas, Algebra I includes summative assessments that are aligned to the TEKS of the course. "Topic Assessments" (Form A and Form B), "Performance Tasks" (Form A and Form B), "Exit Tickets," and "Benchmark Assessments" include the TEKS alignment indicated next to assessment items or in rubrics.

EnVision+ Texas, Algebra I includes summative assessments that are aligned to the objectives of the unit or lesson. The assessments are given at the end of a topic, after a group of topics, or at the end of the year and reflect the objectives of the instructional content.

2.1e – Instructional assessments include TEKS-aligned items at varying levels of complexity.

EnVision+ Texas, Algebra I includes instructional assessments with the TEKS-aligned items at varying levels of complexity. The "Item Analysis Chart for Topic 7: Quick Check" lists five items aligned to two Depth of Knowledge (DOK) levels and includes TEKS alignment.

EnVision+ Texas, Algebra I also includes instructional assessments with TEKS-aligned items at more than two levels of complexity. The "Item Analysis Chart for Topic 7: Practice and Problem Solving" lists 44 items aligned to three DOK levels, along with the corresponding TEKS.

2.2 Data Analysis and Progress Monitoring

GUIDANCE	SCORE SUMMARY	RAW SCORE
2.2a	All criteria for guidance met.	2/2
2.2b	All criteria for guidance met.	1/1
2.2c	All criteria for guidance met.	2/2
—		TOTAL 5/5

2.2a – Instructional assessments and scoring information provide guidance for interpreting student performance.

EnVision+ Texas, Algebra I includes multiple assessments and explanations on using student data. Formative assessments are used to inform instructional decisions, such as reviewing or revisiting content. In Topic 1, Step 2: "Understand and Apply," a "Common Error" callout in Example 3 identifies common misconceptions and offers guidance on how to address them. In Lesson 4-4, the "Assess and Differentiate" section includes a "Quick Check" with a scoring rubric that outlines how to interpret student responses and performance levels.

EnVision+ Texas, Algebra I provides scoring information that helps teachers analyze student performance. The Assessment Guide includes a "How to Assess" section with rubrics and differentiated response options. The "Assessment Resource" includes an Assessment Data table that shows how to use assessment results to form small groups or provide targeted support. Lesson 4-4 also includes tools in the Practice and Problem Solving section for running item analysis reports, allowing teachers to examine student performance on specific TEKS-aligned skills.

2.2b – Materials provide guidance for the use of included tasks and activities to respond to student trends in performance on assessments.

EnVision+ Texas, Algebra I includes guidance for using tasks and activities to respond to student trends in performance on assessments. The materials include a "Do You Know" section that checks conceptual understanding and provides guidance to review or revisit content based on student performance. In Lesson 1-1, Step 4: "Assess and Differentiate," the materials include a "Quick Check" and a Differentiated Resource page with reteach, additional practice, literacy and vocabulary, enrichment, and "expand your knowledge" tasks. These are designed for use after reviewing student assessment results. In Lesson 4-5 on Systems of Linear Inequalities, the "Assess and Differentiate" section includes differentiated resources to support students who need additional help. The Explore and Share section in the same lesson contains instructional materials for small group instruction that target specific skills. "Exit Tickets" include instructional implications, and the "Assessment Guide" provides information on "Why and When to Assess" to support planning and response to performance data.

2.2c – Materials include tools for teachers to track student progress and growth, and tools for students to track their own progress and growth.

EnVision+ Texas, Algebra I includes tools that allow teachers to track student progress and growth. "Exit Tickets," such as those in Lesson 1-1 and Topic 3, Lesson 1, provide teachers with a way to assess student understanding and use the results to make instructional decisions. The "Assessment Resource" section in the *Teacher's Edition* outlines how teachers can generate assessment data reports to track performance at the individual and class levels.

EnVision+ Texas, Algebra I provides students with tools to monitor their progress and growth. In Lesson 1-1, Step 2, the "Do You Understand?" and "Do You Know How?" sections allow students to check their understanding of the lesson content. The program overview explains how students use the student companion to take notes and complete practice that is aligned with the Student Edition. In Lesson 4-5, the "Explore and Share" section instructs students to annotate their findings in the Student Companion.

3. Supports for All Learners

Materials support educators in reaching all learners through design focused on engagement, representation, and action/expression for learner variability.

3.1 Differentiation and Scaffolds

Guidance marked with a (T) refers to teacher-facing components. Guidance with an (S) refers to student-facing components.

GUIDANCE	SCORE SUMMARY	RAW SCORE
3.1a	All criteria for guidance met.	3/3
3.1b	All criteria for guidance met.	2/2
3.1c	All criteria for guidance met.	2/2
—		TOTAL 7/7

3.1a – Materials include teacher guidance for differentiated instruction, activities, and paired (scaffolded) lessons for students who have not yet reached proficiency on grade-level content and skills.

EnVision+ Texas, Algebra I materials include teacher guidance for differentiated instruction for students who have not yet reached proficiency on grade-level content and skills. For instance, Topic 2, Lesson 1 provides teacher instructions in the "Support Student Understanding" section that highlight areas of student difficulty and offer targeted support strategies. In Lesson 2-2, Step 2, Example 2, the materials provide guidance for differentiating instruction related to slope-intercept form.

EnVision+ Texas, Algebra I materials provide differentiated activities aligned to student needs. In Topic 2, Lesson 1, Step 4, students complete a "Quick Check" to assess understanding, and the system automatically assigns activities based on their results. In Lesson 1-2, Step 2, a language routine activity called "Compare and Connect" supports students who have not yet mastered slope-intercept form by promoting peer discussion to deepen understanding.

EnVision+ Texas, Algebra I includes paired (scaffolded) lesson support for students who need additional help. For example, Topic 2-1 incorporates a "Stronger and Clearer Each Time" language routine, where students build understanding by responding aloud with a partner. In Lesson 2-2, Step 2, Example 4, scaffolded instruction is provided through real-world problem contexts that help students connect abstract concepts to practical applications.

3.1b – Materials include pre-teaching or embedded supports for unfamiliar vocabulary and references in text (e.g., figurative language, idioms, academic language). (T/S)

EnVision+ Texas, Algebra I materials include pre-teaching and embedded supports for unfamiliar vocabulary. For example, the "Mathematical Literacy and Vocabulary" section is part of the differentiated

resources and supports student understanding of key terms and concepts. In Topic 2, Lesson 1, the "Stronger and Clearer Each Time" language routine helps students build academic language through guided partner discussions. Lesson 3-1 includes targeted ELPS support, offering strategies like using visuals and manipulatives to teach vocabulary related to functions and relations.

EnVision+ Texas, Algebra I includes pre-teaching and embedded supports for unfamiliar references in text. Topic 2's Linguistic Accommodations section features "Vocabulary in Context," which defines academic terms and provides additional meanings. In Lesson 3-1, the "Talk About Math Ideas" structured activity gives students opportunities to use academic vocabulary like "domain," "range," and "functions" in peer conversations, reinforcing both understanding and usage.

3.1c – Materials include teacher guidance for differentiated instruction, enrichment, and extension activities for students who have demonstrated proficiency in grade-level content and skill.

EnVision+ Texas, Algebra I materials include teacher guidance for differentiated instruction, enrichment, and extension activities specifically designed for students who have demonstrated proficiency in grade-level content and skills. The "Assess and Differentiate" section includes "Reteach to Build, Additional Practice, and Enrichment" resources that help teachers meet the varied needs of students. In Topic 2, Lesson 1, Step 4, a "Quick Check" is used to assess student understanding and automatically assign appropriate follow-up activities. Additionally, the Explore – For Early Finishers section in Lesson 6-2 guides teachers on how to extend the learning of students who have mastered multiplying polynomials.

EnVision+ Texas, Algebra I provides enrichment and extension guidance. For example, in Topic 1, students select a project aligned to their interests to extend their learning and complete an enrichment task. In Lesson 6-2, Step 2, the Extend Student Thinking activity provides targeted teacher guidance to deepen the understanding of polynomial multiplication for proficient students. These materials demonstrate structured support for extending the learning of students who have already met grade-level expectations through both content-specific activities and flexible project-based options.

3.2 Instructional Methods

GUIDANCE	SCORE SUMMARY	RAW SCORE
3.2a	All criteria for guidance met.	4/4
3.2b	All criteria for guidance met.	2/2
3.2c	All criteria for guidance met.	3/3
—		TOTAL 9/9

3.2a – Materials include explicit (direct) prompts and guidance to support the teacher in modeling and explaining the concept(s) to be learned.

EnVision+ Texas, Algebra I materials include explicit prompts that support teachers in modeling and explaining concepts. Each lesson begins with an "Explore and Share" section that provides clear guidance on lesson flow, guiding questions, and example responses to facilitate conceptual understanding. For example, Lesson 1-5, Step 1: "Explore and Share" includes numerous guiding questions with expected answers and a Process Standards Connection to help teachers model math thinking processes throughout the topic.

EnVision+ Texas, Algebra I includes fully worked-out, annotated solutions with direct prompts to elicit student explanations. Lesson 1-5, Step 2: "Understand and Apply," Example 2: Solve an Inequality with Variables on Both Sides, offers step-by-step solutions and instructs teachers on specific questions to ask, ensuring students build accurate conceptual understanding. Lesson 4-2, "Solving Systems of Equations: Substitution" includes "Math Talk" prompts, visual diagrams, and targeted questions to engage students in think-aloud discussions, supporting modeling of substitution methods effectively.

3.2b – Materials include teacher guidance and recommendations for effective lesson delivery and facilitation using a variety of instructional approaches.

EnVision+ Texas, Algebra I materials provide teacher guidance and recommendations for effective lesson delivery using a variety of instructional approaches. Lesson 1-5, "Explore and Share" guides teachers to use whole-class questioning and discussion before and after instruction, along with small-group collaborative work during instruction to deepen learning. Lesson 1-4, "Explore and Share" includes recommendations for differentiated instruction for early finishers, adding a third instructional approach to address diverse learner needs.

EnVision+ Texas, Algebra I includes Lesson 6-1: "Adding and Subtracting Polynomials," Step 1: "Explore and Share Exit Ticket," which helps teachers check understanding using exit tickets and analyze common student errors. Lesson 6-1, Step 2: "Understand and Apply," Example 3, emphasizes algebra tile manipulatives, written explanations to justify thinking, and "Think-Pair-Share" language routines. These varied approaches promote meaningful engagement, procedural fluency, and collaborative reasoning.

3.2c – Materials support multiple types of practice (e.g., guided, independent, collaborative) and include guidance for teachers and recommended structures (e.g., whole group, small group, individual) to support effective implementation.

EnVision+ Texas, Algebra I materials support multiple types of practice to ensure effective implementation. Lesson 1-4 provides guided example practice problems, auto-graded adaptive digital practice, spiral review, and additional exercises to promote student choice and mastery. Lesson 1-5, Step 3, "Practice and Problem Solving," includes problems of varying difficulty levels, an "Engage Through Student Choice" section to build student agency, and an Item Analysis feature to help teachers tailor assignments to student needs.

EnVision+ Texas, Algebra I includes Lesson 6-8: "Dividing Polynomials," Step 1: "Explore and Share," which guides teachers to implement instructional routines in whole group, small group, and individual structures. For example, students engage in whole-group reasoning, small-group supports for struggling learners, and collaborative activities where they discuss long division strategies with prompts such as, "How can you use what you know about long division to divide polynomials?" This ensures practice is varied, structured, and aligned to learning goals.

3.3 Support for Emergent Bilingual Students

An emergent bilingual student is a student who is in the process of acquiring English and has another language as the primary language. The term emergent bilingual student replaced the term English learner in the Texas Education Code 29, Subchapter B after the September 1, 2021 update. Some instructional materials still use English language learner or English learner and these terms have been retained in direct quotations and titles.

GUIDANCE	SCORE SUMMARY	RAW SCORE
3.3a	All criteria for guidance met.	2/2
3.3b	All criteria for guidance met.	1/1
3.3c	All criteria for guidance met.	8/8
3.3d	This guidance is not applicable to the program.	N/A
—		TOTAL 11/11

3.3a – Materials include teacher guidance on providing linguistic accommodations for various levels of language proficiency [as defined by the English Language Proficiency Standards (ELPS)], which are designed to engage students in using increasingly more academic language.

enVision+ Plus Texas Algebra I materials include teacher guidance on providing linguistic accommodations for various levels of language proficiency, as defined by the ELPS. For example, Lesson 1-5, Solving Inequalities in One Variable, Step 2: "Understand and Apply," Example 4: "Targeted ELPS Support" includes explicit guidance for preproduction, beginning, intermediate, high intermediate, and advanced levels. The materials provide sentence stems such as, "The cost of X missions on App A is ___" for advanced learners to use in peer discussions analyzing comparative costs, ensuring students engage in academic discourse using appropriate vocabulary structures.

enVision+ Plus Texas Algebra I embeds linguistic accommodations throughout lessons, incorporating vocabulary routines, context setting, and vocabulary in context to support emergent bilingual students. For example, Lesson 3-2 includes Targeted ELPS Support guiding teachers to help preproduction students by pointing out words and explaining definitions, while advanced students explain the importance of units in problem-solving using academic language. This structured approach ensures all levels of English proficiency are addressed systematically.

3.3b – Materials include implementation guidance to support teachers in effectively using the materials in state-approved bilingual/ESL programs.

enVision+ Plus Texas Algebra I materials provide implementation guidance to support teachers in effectively using the materials in state-approved bilingual and ESL programs. Each lesson includes language objectives and ELPS references to align instruction with language development goals. For

example, Topic 1, Linguistic Accommodations includes "Metalinguistic Transfer to Spanish," and "Cognates" sections to support teachers in leveraging students' first language for comprehension and academic vocabulary development.

enVision+ Plus Texas Algebra I includes an ELPS correlation guide at the beginning of the Teacher Edition, mapping lessons to specific language domains such as listening, speaking, reading, and writing. Lesson 1-1, Operations on Real Numbers, includes embedded language objectives stating that students will orally explain whether the sum or product of two numbers is rational or irrational. "Math Talk" prompts students to discuss the classification of numbers, supporting oral language development within content instruction.

3.3c – Materials include embedded guidance for teachers to support emergent bilingual students in developing academic vocabulary, increasing comprehension, building background knowledge, and making cross-linguistic connections through oral and written discourse.

enVision+ Plus Texas Algebra I materials include embedded guidance for teachers to support emergent bilingual students in developing academic vocabulary, increasing comprehension, building background knowledge, and making cross-linguistic connections through oral and written discourse. For example, Topic 1, Linguistic Accommodations, provides "Vocabulary in Context" sections explaining mathematical terms and their everyday meanings to build vocabulary and comprehension, alongside "Metalinguistic Transfer to Spanish" sections to connect prior knowledge in students' first language.

enVision+ Plus Texas Algebra I integrates written discourse supports. In Lesson 1-6: "Compound Inequalities," Step 2: "Understand and Apply," Example 4, students read and annotate math problems, discuss strategies with peers, and use precise mathematical language in explanations. The Targeted ELPS Support guides teachers to use sentence stems and structured prompts such as, "What is the goal of the problem?" to scaffold academic writing and oral discussions, ensuring students engage deeply with mathematical content while developing language proficiency.

3.3d – If designed for dual language immersion (DLI) programs, materials include resources that outline opportunities to address metalinguistic transfer from English to the partner language.

This guidance is not applicable because the program is not designed for dual language immersion (DLI) programs.

4. Depth and Coherence of Key Concepts

Materials are designed to meet the rigor of the standards while connecting concepts within and across grade levels/courses.

4.1 Depth of Key Concepts

GUIDANCE	SCORE SUMMARY	RAW SCORE
4.1a	All criteria for guidance met.	2/2
4.1b	All criteria for guidance met.	1/1
—		TOTAL 3/3

4.1a – Practice opportunities over the course of a lesson and/or unit (including instructional assessments) require students to demonstrate depth of understanding aligned to the TEKS.

EnVision+ Texas, Algebra I includes practice opportunities over the course of a lesson and unit that require students to demonstrate depth of understanding aligned to the TEKS. Lessons include components such as "Try It," "Do You Know," and "Practice and Problem Solving," where tasks increase in complexity and depth. For example, in Topic 1, Step 3: "Practice and Problem Solving," students complete tasks at various cognitive levels, such as listing numbers (DOK1), analyzing situations (DOK2), and justifying arguments (DOK3). These practice items are aligned to the TEKS, as identified in the Item Analysis.

EnVision+ Texas, Algebra I includes instructional assessments that require students to demonstrate depth of understanding aligned to the TEKS. In Topic 2, the Performance Task includes items that ask students to write an equation based on a prediction and explain (DOK4), identify slope and y-intercept and explain (DOK3), and select a graph and justify the choice (DOK2). These assessment items are aligned to the TEKS, as shown in the Performance Task Scoring Guide.

4.1b – Questions and tasks progressively increase in rigor and complexity, leading to grade-level proficiency in the mathematics TEKS.

EnVision+ Texas, Algebra I includes questions and tasks that progressively increase in rigor and complexity, leading to grade-level proficiency in the mathematics TEKS. Each lesson is structured in four sequential steps: Step 1 focuses on activating and connecting prior knowledge; Step 2 emphasizes understanding and applying new content; Step 3 provides practice and problem solving; and Step 4 includes a check for understanding. Progress Monitoring Assessments and problem sets show an increase in complexity. For example, in Topic 8, the Performance Task includes items at different Depth of Knowledge levels, such as DOK 2 for question 1A and DOK 3 for question 1B, as documented in the Assessment Resource scoring guide.

4.2 Coherence of Key Concepts

GUIDANCE	SCORE SUMMARY	RAW SCORE
4.2a	All criteria for guidance met.	1/1
4.2b	All criteria for guidance met.	3/3
4.2c	All criteria for guidance met.	4/4
—		TOTAL 8/8

4.2a – Materials demonstrate coherence across units by explicitly connecting patterns, big ideas, and relationships between mathematical concepts.

EnVision+ Texas, Algebra I materials demonstrate coherence across units by explicitly connecting patterns, big ideas, and mathematical relationships. Topic 3: "Math Background," links linear equations to linear functions and outlines prior and future learning. The section also addresses conceptual understanding, procedural fluency, and application. Lessons 3–5 connect arithmetic sequences to linear functions and reference prior knowledge of real numbers. In Lesson 5-2, the overview aligns content with the TEKS, ELPS, and readiness standards, and the "Explore and Share" section connects prior knowledge of square area to the introduction of square roots.

4.2b – Materials demonstrate coherence across units by connecting the content and language learned in previous courses/grade levels and what will be learned in future courses/grade levels to the content to be learned in the current course/grade level.

EnVision+ Texas, Algebra I connects prior grade-level content to current learning. In Topic 1, the "Math Background Coherence" section links eighth-grade concepts of rational and irrational numbers to solving linear equations and inequalities in Algebra I. Topic 3: "Math Background" includes a "Looking Back" section that identifies connections between previously learned content and current concepts. Lessons also include questions that require students to apply earlier learning, for example, connecting domain and range to scatterplots when analyzing lines of best fit.

EnVision+ Texas, Algebra I connects academic language from earlier grade levels to current terminology. Topic 3, "Linguistic Accommodations" includes vocabulary in context and a list of vocabulary terms from previous and upcoming grade levels, helping students link prior language knowledge with new content.

EnVision+ Texas, Algebra I links current learning to future coursework. In Topic 3, the "Looking Ahead" section outlines how the topic connects to upcoming concepts. In Topic 5, the "Math Background Coherence" section explains how understanding exponents and exponential functions prepares students for Algebra II topics such as logarithmic, radical, and rational exponents.

4.2c – Materials demonstrate coherence at the lesson level by connecting students' prior knowledge of concepts and procedures from the current and prior grade level(s) to new mathematical knowledge and skills.

EnVision+ Texas, Algebra I connects current grade-level concepts to new mathematical knowledge and skills. In Lesson 7-1, students extend their understanding of domain and range from linear to quadratic functions. Topic 3, "Math Background Coherence" references earlier Algebra I topics to support current learning and establish continuity with future instruction.

EnVision+ Texas, Algebra I connects current grade-level procedures to new mathematical skills. In Lesson 7-1, students use multiplying binomials as a foundation to develop skills in factoring trinomials in standard quadratic form.

EnVision+ Texas, Algebra I connects prior grade-level concepts to current instruction. Topic 3, "Math Background Coherence," "Looking Back," references Grade 8 concepts and explains how they relate to current and future content, including Topic 7 and Algebra II. Additional evidence shows how writing equations in Grade 8 connects to solving systems of equations in Algebra I.

4.3 Coherence and Variety of Practice

GUIDANCE	SCORE SUMMARY	RAW SCORE
4.3a	All criteria for guidance met.	4/4
4.3b	All criteria for guidance met.	4/4
—		TOTAL 8/8

4.3a – Materials provide spaced retrieval opportunities with previously learned skills and concepts across lessons and units.

EnVision+ Texas, Algebra I provides spaced retrieval opportunities with previously learned skills across lessons. In Lesson 4-4, students revisit solving for the unknown before applying this skill to graphing inequalities on a coordinate plane. The materials also include Skills Review and Practice sections that prompt students to recall how to solve equations before extending to new contexts, such as solving inequalities.

EnVision+ Texas, Algebra I includes spaced retrieval opportunities with previously learned skills across units. For example, in Topic 3-1, the "Skills Review" and "Practice" sections highlight prerequisite skills needed for the lesson, such as solving equations introduced in earlier units. These activities help reinforce prior learning while preparing students for new instructional content.

EnVision+ Texas, Algebra I supports spaced retrieval of previously learned concepts across lessons. In Lessons 1–2, students apply their prior understanding of integers and linear equations to solve multistep equations. The "Explore and Share" activities in Topic 3, Step 1 are designed to activate students' prior conceptual understanding before they are introduced to new learning in the "Understand and Apply" section.

EnVision+ Texas, Algebra I provides opportunities for spaced retrieval of previously learned concepts across units. Topic 3, "Readiness Assessment" evaluates student proficiency on concepts and skills introduced in earlier topics. This assessment helps identify learning needs and informs the creation of personalized study plans, reinforcing content from previous units while preparing students for upcoming instruction.

4.3b – Materials provide interleaved practice opportunities with previously learned skills and concepts across lessons and units.

EnVision+ Texas, Algebra I includes interleaved practice opportunities with previously learned skills across lessons. In Lesson 4-5, students apply the skill of solving systems of equations—learned in prior lessons—to solve systems of inequalities. Lessons also incorporate previously learned strategies, such as graphing and using tables, and allow students to choose among different solution methods, promoting flexible problem-solving.

EnVision+ Texas, Algebra I provides interleaved practice of previously learned skills across units. In Topic 8, assessments incorporate multiple TEKS introduced in earlier units, reinforcing content from previous instruction. Digital resources also allow students to access tutorials and practice activities that span multiple units, while teachers can use the platform to monitor progress and make informed instructional decisions.

EnVision+ Texas, Algebra I integrates previously learned concepts across lessons through targeted practice. For example, Lesson 3-2 "Practice and Problem Solving" includes the TEKS A.3C and earlier concepts from the TEKS A.2A and A.12A, offering students opportunities to switch between concepts and apply them in new contexts.

EnVision+ Texas, Algebra I incorporates interleaved practice of previously learned concepts across units. The Topic 8 "Assessment" includes problems that require understanding TEKS covered in multiple earlier units, supporting cumulative review and helping students integrate knowledge over time.

5. Balance of Conceptual and Procedural Understanding

Materials are designed to balance conceptual understanding, procedural skills, and fluency.

5.1 Development of Conceptual Understanding

GUIDANCE	SCORE SUMMARY	RAW SCORE
5.1a	All criteria for guidance met.	3/3
5.1b	All criteria for guidance met.	1/1
5.1c	All criteria for guidance met.	1/1
—		TOTAL 5/5

5.1a – Questions and tasks require students to interpret, analyze, and evaluate models and representations for mathematical concepts and situations.

EnVision+ Texas, Algebra I materials include questions and tasks that prompt students to interpret, analyze, and evaluate mathematical models and representations. For example, in Topic 1, "Math Modeling in 3 Acts," students explore and apply concepts related to solving equations and inequalities. In Lesson 1-3, students interpret models using algebra tiles to represent multi-step equations. In Topic 3, "Math Modeling in 3 Acts," students analyze real-world data, such as comparing grocery store lines, to write mathematical models. In Lesson 6-2, students evaluate models by working in pairs to analyze polynomial factoring. The language routine in Lesson 6-3 guides teachers in posing evaluation questions, such as "What laws or theorems justify these steps?", reinforcing the practice of justifying solutions based on mathematical models. These examples show that the materials incorporate all three cognitive processes—interpretation, analysis, and evaluation—within mathematical modeling tasks.

5.1b – Questions and tasks require students to create models to represent mathematical situations.

EnVision+ Texas, Algebra I materials require students to create models that represent mathematical situations. In Topic 2, "Math Modeling in 3 Acts," students build linear models to measure height in terms of foam cups. In Topic 2, "Pick a Project B," students draw a model of a pitched roof appropriate for snowy climates or solar panel installation. In Lesson 6-2, students create a model using binomials to calculate the area of a smartphone, supported by teacher prompts such as "How can you use a table to help find the area?" In Lesson 6-1, students use algebra tiles to model polynomial operations, with teachers guiding them to ask questions like "How are like terms represented in the diagrams?" and "What do you notice after combining terms?" These tasks provide hands-on opportunities for students to construct and refine mathematical models.

5.1c – Questions and tasks provide opportunities for students to apply conceptual understanding to new problem situations and contexts.

EnVision+ Texas, Algebra I materials provide students with multiple opportunities to apply their conceptual understanding to new contexts and problem situations. In Topic 5-2, "Extend Student Thinking," students rewrite radical expressions by using perfect squares or cubes in the radicand. In Topic 5-1, "Extend Student Thinking," students apply knowledge of rational exponents to problems involving irrational numbers. In Lessons 4-5, students transition from solving systems of equations to systems of inequalities, supported by teacher prompts such as, "Is this true for a system of inequalities?" and "How can you verify that the shaded region is correct?" In Lesson 8-6, students apply their understanding of solving systems by integrating quadratic equations and are asked, "What could you do to use addition rather than subtraction?" These examples demonstrate how the materials facilitate the transfer of knowledge to unfamiliar contexts, thereby reinforcing conceptual depth and flexibility.

5.2 Development of Fluency

GUIDANCE	SCORE SUMMARY	RAW SCORE
5.2a	All criteria for guidance met.	2/2
5.2b	All criteria for guidance met.	3/3
5.2c	All criteria for guidance met.	3/3
5.2d	All criteria for guidance met.	1/1
—		TOTAL 9/9

5.2a – Materials provide tasks that are designed to build student automaticity and fluency necessary to complete grade-level tasks.

EnVision+ Texas, Algebra I materials include tasks designed to build student automaticity and fluency needed for grade-level mastery. Lesson 1-4, Step 3: "Practice and Problem Solving," offers adaptive practice targeting students' specific weaknesses through high-volume repetition to drive automaticity. Spiral review practice maintains fluency by revisiting previously learned skills in spaced intervals, supporting long-term retention and procedural efficiency.

EnVision+ Texas, Algebra I includes Lesson 6-8, "Dividing Polynomials Warm Up," which engages students in long division with rational numbers to build fluency for upcoming polynomial division tasks. Lesson 2-2: "Slope Intercept Form," Step 2: "Understand and Apply," Example 1 supports automaticity by having students plot points on a coordinate grid, paired with conceptual prompts such as, "How do you know the b-value of the equation is always the y-intercept of the graph?" to reinforce connections between conceptual understanding and procedural fluency.

5.2b – Materials provide opportunities for students to practice the application of efficient, flexible, and accurate mathematical procedures within the lesson and/or throughout a unit.

EnVision+ Texas, Algebra I materials provide opportunities for students to practice flexible mathematical procedures within lessons and units. Topic 1-5, Example 2, prompts students to choose between two methods to solve an inequality and discuss which is easier to interpret, supporting critical thinking about procedural efficiency. Topic 1, "Math Modeling in 3 Acts," Act 3, requires students to analyze the efficiency of their chosen approach and represent solutions algebraically and graphically, promoting flexibility in mathematical thinking.

EnVision+ Texas, Algebra I includes Lesson 8-5: "The Quadratic Formula and the Discriminant," Step 3: "Practice and Problem Solving," Problem 16, which allows students to solve quadratic equations using their preferred method, whether completing the square, factoring, or using the quadratic formula. Example 2 in the same lesson explicitly models the efficient use of the quadratic formula, helping students build confidence in selecting and applying the most effective mathematical procedures.

5.2c – Materials provide opportunities for students to evaluate procedures, processes, and solutions for efficiency, flexibility, and accuracy within the lesson and throughout a unit.

EnVision+ Texas, Algebra I materials provide opportunities for students to evaluate procedures, processes, and solutions for efficiency, flexibility, and accuracy. Topic 2, "Math Modeling in 3 Acts," Act 3 prompts students to analyze and evaluate the efficiency of their solution methods, consider alternative solutions, and compare their answers to benchmark solutions to check accuracy. This supports students in developing reflective habits in mathematical problem solving.

EnVision+ Texas, Algebra I includes Lesson 8-6: "Solving Systems of Linear and Quadratic Equations," Step 3: "Practice and Problem Solving," Problem 16, which requires students to determine when to use graphing, elimination, or substitution to solve linear-quadratic systems and justify their choices. Lesson 2-5: "Parallel and Perpendicular Lines," Step 2: "Understand and Apply," Example 5 provides real-world problems with teacher prompts such as, "Why was the point-slope form of a linear equation used to find a line parallel to Meadow Way?" ensuring students evaluate the appropriateness and efficiency of their chosen methods.

5.2d – Materials contain embedded supports for teachers to guide students toward increasingly efficient approaches.

EnVision+ Texas, Algebra I materials contain embedded supports to guide students toward increasingly efficient approaches. Topic 2, "Math Modeling in 3 Acts" Act 2 identifies inefficient student methods, such as repeated addition, and guides teachers to help students convert them into linear functions for greater efficiency. Topic 5, "Math Modeling in 3 Acts," Act 3 advises teachers on when to suggest more efficient approaches if students initially use tedious or time-consuming methods.

EnVision+ Texas, Algebra I includes Lesson 3-4: "Transforming Linear Equations," Step 2: "Understand and Apply," Example 1, which provides rules for linear transformations to help students graph equations efficiently without plotting each point. Lesson 3-6, "Scatter Plots and Lines of Fit," Step 2: "Understand and Apply," Example 1 guides teachers with prompts such as, "How might you use what you know about slope to determine the association?" to support efficient analysis of scatter plot data. These embedded supports ensure students develop increasingly abstract and streamlined approaches to problem solving.

5.3 Balance of Conceptual Understanding and Procedural Fluency

GUIDANCE	SCORE SUMMARY	RAW SCORE
5.3a	All criteria for guidance met.	2/2
5.3b	All criteria for guidance met.	3/3
5.3c	All criteria for guidance met.	6/6
—		TOTAL 11/11

5.3a – Materials explicitly state how the conceptual and procedural emphasis of the TEKS are addressed.

EnVision+ Plus Texas Algebra I materials explicitly state how the conceptual and procedural emphasis of the TEKS are addressed. The Topic 1, "Planner Essential Understanding" outlines core conceptual knowledge such as the set of real numbers including both rational and irrational numbers, and that linear equations can be used to solve mathematical and real-world problems. The Topic 1, "Planner Mathematical Objectives" details procedural skills, such as finding sums or products of rational numbers and creating and solving linear equations using properties of equality.

EnVision+ Plus Texas Algebra I integrates conceptual and procedural emphasis within lesson examples. For instance, Lesson 4-1, "Solving Systems of Equations by Graphing," Example 3, Compare and Contrast, prompts students to discuss how graphing technology helps conceptualize solutions visually before solving algebraically. This alignment ensures students understand both the why (conceptual) and how (procedural) of the TEKS content.

5.3b – Questions and tasks include the use of concrete models and manipulatives, pictorial representations (figures/drawings), and abstract representations, as required by the TEKS.

EnVision+ Plus Texas Algebra I materials include questions and tasks utilizing concrete models, pictorial representations, and abstract representations as required by the TEKS. For example, Lesson 6-1, "Adding and Subtracting Polynomials," Example 3 uses algebra tiles (concrete) alongside pictorial diagrams of the tiles and abstract polynomial expressions. Prompts such as, "When a polynomial has two like terms, how do you know whether the combined term is positive or negative?" guide students to connect physical representations to symbolic understanding.

EnVision+ Plus Texas Algebra I includes Lesson 6-3, "Multiplying Special Cases," Example 1, which uses algebra tiles to model squaring binomials and provides pictorial representations to illustrate the process visually. Students are then guided to abstractly express patterns identified in the models, for example, explaining, "How do area models and algebraic expressions help you understand the patterns for the square of a binomial and for the product of a sum and a difference?" ensuring conceptual transfer.

5.3c – Materials include supports for students in connecting, creating, defining, and explaining concrete and representational models to abstract (symbolic/numeric/algorithmic) concepts, as required by the TEKS.

EnVision+ Plus Texas Algebra I materials support students in connecting, creating, defining, and explaining concrete and representational models to abstract concepts. Topic 2, "Math Modeling in 3 Acts," "How Tall is Tall," guides students from physically stacking foam cups (concrete) to creating representational graphs, then defining the abstract linear function modeling their observations. Teacher prompts help students explain how patterns in the model relate to algebraic equations.

EnVision+ Plus Texas Algebra I also includes Lesson 1-2, "Solving Linear Equations," Example 5, where students define variables from real-world contexts to build equations and solve them abstractly. Language routines such as "Stronger and Clearer Each Time" require students to articulate how models connect to abstract representations, with teacher guidance prompts like, "How can you justify the steps you used to model the problem?" ensuring clarity and depth of understanding.

5.4 Development of Academic Mathematical Language

GUIDANCE	SCORE SUMMARY	RAW SCORE
5.4a	All criteria for guidance met.	3/3
5.4b	All criteria for guidance met.	1/1
5.4c	All criteria for guidance met.	6/6
—		TOTAL 10/10

5.4a – Materials provide opportunities for students to develop academic mathematical language using visuals, manipulatives, and other language development strategies.

EnVision+ Texas Algebra I Teacher's Edition Lesson 2-2, Step 2: "Understand and Apply," Example 2, incorporates visuals and promotes mathematical discourse. Students analyze a graph to identify the slope and y-intercept, then respond to prompts such as, "How can you tell whether the slope is positive or negative?" This supports development of academic language and visual interpretation.

EnVision+ Texas Algebra I Teacher's Edition Lesson 2-2, Step 2: "Understand and Apply," Example 4, integrates manipulatives by having students use bus fare cards in a contextualized problem to model linear functions. Language supports are provided in the ELPS section, including a collaborative prompt: "How many times can Amari ride the subway before he needs to add more money to the fare card?"

5.4b – Materials include embedded teacher guidance to scaffold and support students' development and use of academic mathematical vocabulary in context.

EnVision+ Texas Algebra I Teacher's Edition Lesson 3-7, Step 2: "Understand and Apply," Example 3, provides embedded teacher guidance for extending vocabulary (e.g., residual, slope, y-intercept) related to lines of best fit. Guiding questions such as, "Why can a residual be positive or negative?" and "Why does a pattern in the residuals indicate a poor fit?" help deepen student vocabulary in context.

EnVision+ Texas Algebra I Teacher's Edition Lesson 3-7, Step 2: "Understand and Apply," Example 4, continues vocabulary development through prompts such as, "Why are slope and y-intercept called parameters?" and "Compare interpolation and extrapolation." The materials support vocabulary use in mathematical contexts and real-world connections.

5.4c – Materials include embedded teacher guidance to support the application of appropriate mathematical language to include vocabulary, syntax, and discourse to include guidance to support mathematical conversations that provide opportunities for students to hear, refine, and use math language with peers and develop their math language toolkit over time as well as guide teachers to support student responses using exemplar responses to questions and tasks.

EnVision+ Texas Algebra I Teacher's Edition Lesson 1-1, Step 2: "Understand and Apply," Example 4, includes Targeted ELPS support, offering sentence stems such as, "The equation for c is not true because . . ." and discourse prompts like, "How does the product change if the factors are zero and an irrational number?" This supports syntax and mathematical discourse.

EnVision+ Texas Algebra I Teacher's Edition Lesson 7-4, Step 2: "Understand and Apply," Example 3, encourages students to discuss how translations affect functions. The ELPS guidance helps students navigate words with multiple meanings, such as "translate" and "vertex," promoting clarity and structured conversation through questions like, "Does the order of vertical and horizontal translations matter?"

5.5 Process Standards Connection

GUIDANCE	SCORE SUMMARY	RAW SCORE
5.5a	All criteria for guidance met.	1/1
5.5b	All criteria for guidance met.	2/2
5.5c	All criteria for guidance met.	2/2
5.5d	All criteria for guidance met.	1/1
—		TOTAL 6/6

5.5a – TEKS process standards are integrated appropriately into the materials.

EnVision+ Texas Algebra I Teacher's Edition, Lesson 5-5, Step 2: "Understand and Apply," Example 4, asks students to connect geometric sequences with exponential functions. Guiding questions—"Why is 1 subtracted from the exponent?" and "Which model did you use to calculate your answer?"—help students connect recursive and explicit forms and make meaning of different representations.

EnVision+ Texas Algebra I Teacher's Edition, Lesson 5-5, Step 2: "Understand and Apply," Example 5, emphasizes using both recursive and explicit formulas to solve real-world problems. Teachers are guided with prompts such as, "Why is the explicit formula more appropriate in this case?" to facilitate connections between representations.

5.5b – Materials include a description of how TEKS process standards are incorporated and connected throughout the course.

EnVision+ Texas Algebra I Teacher's Edition, Front Matter, "Mathematical Process Standards" explains how process standards are "infused and explicitly highlighted" in lesson instruction and assessments. It also states that students apply the processes through "Do You Understand?" and "Topic Performance Assessment" tasks. *enVision+ Texas Algebra I Teacher's Edition*, Lesson 2-2, Step 1: "Explore and Share" prompts students to explore linear relationships using slope-intercept form. The process standard A.2B is applied through guided questioning such as, "How could the relationship between the down payment and the weekly payment be summarized?"

5.5c – Materials include a description for each unit of how TEKS process standards are incorporated and connected throughout the unit.

EnVision+ Texas Algebra I Teacher's Edition, Lesson 5-4: "Lesson Overview" and Step 2: "Understand and Apply," Example 1, describe how students construct and interpret exponential growth models. The TEKS A.9B is embedded and prompts such as, "Why is the rate of change added to 1?", that facilitate reasoning across units.

5.5d – Materials include an overview of the TEKS process standards incorporated into each lesson.

EnVision+ Texas Algebra I Teacher's Edition, Lesson 1-6, Step 2: "Understand and Apply," Example 4, guides students through a compound inequality problem. Prompts such as "How can you determine whether to use 'and' or 'or'?" support integration of the TEKS process standards within the lesson.

EnVision+ Texas Algebra I Teacher's Edition, Lesson 1-6, Step 1: "Explore and Share" presents a real-world situation requiring students to use compound inequalities with constraints. Questions like, "What words in this problem help you understand it can be represented by an inequality?" promote problem-solving and reasoning.

6. Productive Struggle

Materials support students in applying disciplinary practices to productive problem-solving, including explaining and revising their thinking.

6.1 Student Self-Efficacy

GUIDANCE	SCORE SUMMARY	RAW SCORE
6.1a	All criteria for guidance met.	3/3
6.1b	All criteria for guidance met.	6/6
6.1c	All criteria for guidance met.	3/3
—		TOTAL 12/12

6.1a – Materials provide opportunities for students to think mathematically, persevere through solving problems, and to make sense of mathematics.

EnVision+ Texas Algebra I materials support students in thinking mathematically and making sense of mathematics through structured journaling and real-world applications. For example, in Lesson 1-2, Step 1: "Explore and Share," the "Student Companion Journal" encourages students to document their problem-solving process, reflect on strategies, and engage with a linear equations problem situated in a real-world context. Teacher prompts such as, "What kind of mathematical model can you use to solve these problems?" and "How well does it present the situation?" provide scaffolding to help students analyze and refine their mathematical reasoning. *enVision+ Texas Algebra I Teacher's Edition*, Lesson 1-2, Step 2: "Understand and Apply," Example 5, supports students in making sense of mathematics through visual models and guided discourse. A real-world problem involving time and distance is paired with a visual aid, helping students organize and represent their thinking. Teachers are guided to ask, "How can you use the relationship between distance and rate to determine the time spent walking or biking?" and "How is the information given in the problem reflected in the equations you used?" which encourages multiple representations and deepens understanding.

6.1b – Materials support students in understanding, explaining, and justifying that there can be multiple ways to represent and solve problems and complete tasks.

EnVision+ Texas Algebra I materials support students in exploring and justifying multiple approaches to solving problems. In Lesson 4-1, Step 2: "Understand and Apply," Example 3, the embedded language routine engages students in a "Think-Pair-Share" activity where they compare solving a system of equations by hand versus using technology. Prompts such as "How do you determine which method is appropriate for each situation?" and "How are the two graphing techniques different?" guide students to reflect on the efficiency and accuracy of different strategies. *EnVision+ Texas Algebra I*, Lesson 4-1, Step 3: Practice and Problem Solving, Problem 11, reinforces students' understanding that there are multiple valid solution strategies. In this error analysis task, students must identify and correct another student's mistake and then justify an alternative method. This activity develops metacognition, encourages

students to reflect on mathematical processes, and supports argumentation of why a different method is also valid.

6.1c – Materials are designed to require students to make sense of mathematics through multiple opportunities for students to do, write about, and discuss math with peers and teachers.

EnVision+ Texas Algebra I Lesson 3-5, Step 2: "Understand and Apply," Example 2, provides structured opportunities for students to write and discuss mathematics. Students explore arithmetic sequences by writing recursive formulas and comparing solutions with peers. The teacher facilitates discussion using prompts like, "How can you compare your solution to your partner's?", encouraging verbal and written mathematical communication tied to a real-world context. *enVision+ Texas Algebra I* Lesson 3-5, Step 2: "Understand and Apply," Example 3, offers students a collaborative problem-solving experience where they apply an explicit arithmetic sequence formula in a partner challenge. Discussion prompts such as, "Why is using an explicit formula more efficient?" and "How could you use the table to verify the cost?" require students to connect representations and clearly explain their reasoning during peer discussions and reflections.

6.2 Facilitating Productive Struggle

GUIDANCE	SCORE SUMMARY	RAW SCORE
6.2a	All criteria for guidance met.	6/6
6.2b	All criteria for guidance met.	4/4
—		TOTAL 10/10

6.2a – Materials support teachers in guiding students to share and reflect on their problem-solving approaches, including explanations, arguments, and justifications.

EnVision+ Texas Algebra I Lesson 4-4, Step 2: "Understand and Apply," "Stronger and Clearer Each Time" language routine supports structured student reflection. Students explain the relationship between inequalities and their graphical representations using prompts like, "How do you know the equation and the graph are the same?" and "What are the corresponding pieces of information on each representation?" These structured discussions allow students to refine their explanations through peer feedback. *enVision+ Texas Algebra I* Lesson 4-2, Step 3: "Practice and Problem-Solving," Problem 10, provides students with a reflection task where they must justify which method—graphing or substitution—is more efficient for solving a system of equations. This task encourages critical thinking about problem-solving strategies and helps students articulate their reasoning with clarity.

6.2b – Materials include prompts and guidance to support teachers in providing explanatory feedback based on student responses and anticipated misconceptions.

EnVision+ Texas Algebra I Lesson 6-1, Step 2: "Understand and Apply," Example 5 provides direct teacher guidance to address anticipated misconceptions in subtracting polynomials. The materials highlight the common error of not changing the signs of each term when subtracting polynomials and guide teachers to reframe the expression using distributive property. A question prompt, "What property is used to isolate the variables?" further supports teachers in deepening students' conceptual understanding.

EnVision+ Texas Algebra I Lesson 6-8, Step 2: "Understand and Apply," Example 1 supports teachers in addressing common misconceptions in dividing polynomials. The materials anticipate student errors, such as incorrectly dividing terms, and guide teachers to use language and questions like, "Can you find the restrictions on x after you have completed division?" and "How can you use what you know about long division with numbers to help you divide polynomials?" to provide effective explanatory feedback.